
International Journal of Industrial Engineering & Management Science, Vol. 9, Issue 1, (2022) 2-14 

    

 

 
 

 
 

 

* Corresponding author. 

  E-mail address:  movafaghpour@jsu.ac.ir  
 

 

 

International Journal of Industrial Engineering & Management Science 

 
University of 
Hormozgan 

j o u r n a l   h o m e p a g e:   w w w . i j i e m s . c o m 

 

Using Trended Regression Trees for Computing Unbiased Makespan of PERT Networks 

 

Mohamad Ali Movafaghpour a 

 
a Industrial Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran   

                                                                                           A  B  S  T  R  A  C  T 

 
 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In project management, a project consists of a set of activities 

and a set of binary relations expressing which tasks cannot start 

before which preceding tasks are completed. We can illustrate 

this set of tasks and precedence relations as a network. This 

network is a directed acyclic graph. With such an activities 

network the problem is to find critical activities, and determining 

the optimal starting times of activities, to minimize the project 

makespan. 

In spite of projects with deterministic durations, in many 

real-world projects, activity durations can be represented by 

stochastic numbers, where the duration of some or all of the 

activities are modeled as probabilistic numbers with known 

central tendency and dispersion indices or even stochastic 

distributions. Traditionally, the shortest path or Project 

Completion Time (PCT) in such a probabilistic network is 

found with the Project Evaluation and Review Technique 

(PERT). PERT provides inaccurate information about project 

makespan. Usually, this inaccuracy is significant enough to 

make such estimates as not applicable. As a result of this 

systematic error, many improvements since the introduction of 

PERT in 1959 by Malcolm et al. (1959) have been developed. 

However, in spite of its biased results and the many 

improvements, PERT is presented in most textbooks on Project 

Management. This is due, perhaps, to its simple and 

informative application.  

To be exact, PERT is observed to be optimistic; i.e. most of the 

procedures designed for analysis purpose like as the PERT 

resulted in an estimation of the earliest completion time that is 

both optimistic and biased (Pontrandolfo, 2000). This situation 

arises from the effect called “merge event bias”. In general, the 

maximum of a set of random variables is a new random variable 

different from each of them and therefore it has its mean and 

variance different from each of them. 

The results generated by PERT for mean value of PCT are 

almost known to underestimate the values observed in action. One 

of the most important causes of this problem usually is reported as 

merge event bias. In this paper, we review the recent findings in 

statistics for modeling the mean value and variance of the merge 

event and propose novel formulas for mean value and variance of 

the event merging non-identically distributed activities. 

Simulations made to compare the results generated by our 
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developed algorithm versus PERT show that our proposed method 

can provide more effective estimates for mean value and variance 

of merge events and consequently PCT.  

Other than planning start/finish time of activities, which is our 

focus problem in this paper, there are other problems regarding 

project planning for example considering constrained capacity for 

project resources, time-cost tradeoffs, and etc.. In this paper with 

no lack of generality for using the findings of this paper, we relax 

the capacity constraints and activity time-cost tradeoffs. 

In the following sections first we review the techniques for 

finding the shortest path in probabilistic networks; and their 

shortcomings are discussed in section 2. Some revisions on classic 

PERT are discussed in section 3. Section 4 reviews some bounds 

on the mean and variance of a merge event. In section 5 we present 

our calculated bounds on such statistic and their efficiency is 

evaluated in section 6. 

 

2. Literature Review 

 Critical Path Method (CPM) first was proposed by Kelley & 

Walker (1959) at the DuPont Corporation. Then Malcolm et al. 

(1959) developed PERT at less than one year later in General 

Dynamics and the US Navy. Zhen-ting et al. (2010) argue that 

CPM and PERT are two primary well-known tools and are 

frequently used for project scheduling. Although we know that 

most activity durations are stochastic in nature, in contrast with 

CPM that assumes deterministic activity durations. PERT assumes 

that each activity duration follows a random distribution. 

Enumerating all the potential paths connecting the start node to 

the end node in the project network and then finding the most 

probable CP is another idea which was proposed by Chu et al. 

(2014). 

Yao & Chu (2007) attempt to search for discretized probability 

distribution function for project makespan through enumeration 

all the potential paths.  

Besides stochastic activity durations, resource levels may also 

be available at stochastic amounts, Chen et al. (2018) and Rostami 

et al. (2018) considered such problem. 

Bordley et al. (2019) investigate the problem of uncertain 

project deadlines and propose an algorithm called modified-PERT 

for crashing activities. Sometimes two types of uncertainty are 

considered, e.g. Golenko-Ginzburg and Gonik (1998) focused on 

a problem in which each activity is of random duration depending 

on the resource amounts assigned to that activity; the resources 

consumption rate is linearly correlated with the resource amount 

plus a random offset.  

PERT enables the project managers and planners in diverse 

fields to estimate the probability of meeting specified completion 

dates for example Nekoufar and Movafaghpour (2017) reported a 

PERT implementation for university curriculum planning. A 

novel approach to estimate project completion time is using 

machine learning algorithms for improving the prediction 

accuracy instead of using statistics. For example Yan and Shang 

(2019) used relative entropy kernel regression (REKR) and 

Gaussian margin machines (GMM) for precise forecast values for 

design time. Also Hajiali, Mosavi, and Shahanaghi (2020) 

developed a model based on ensemble learning using certain 

specifications of projects to estimate the project completion time. 

They reported higher reliability and better robustness in estimating 

project span. In this paper, we focus on stochastic activity 

durations and develop a less biased estimate for the project 

makespan. 

 

3. PERT 

Malcolm et al. (1959) suggested the classical PERT mean and 

variance based on the given expert estimated lower and upper 

bounds a, and b and most likely value m:  

      4
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In a PERT activity network, durations of activities are assumed 

to be independent of each other and follow a distribution called 

Beta distribution (Hajdu & Bokor, 2016)) following the 

Probability Density Function (PDF) as below: 
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Both p and q must be positive real numbers. For the mean value 

of such random variable X we have: 
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Classic PERT assumes a modified Beta distribution on activity 

durations. Such that each activity duration xi has a mode and is 

confined between a pair of bounds: 

      a ≤ xi ≤ b, Mode(xi) = m. (5) 

 

Therefore PDF (3) is revised as: 
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Where both p and q be are real numbers. We can compute the 

mean, variance and distribution mode of modified Beta 

distribution using its probability distribution function as: 
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Although Malcolm et al. (1959) assumed beta distribution for the 

activity durations. This was criticized by many researchers, and 

several new distribution types were introduced. e.g. Lee et al. (2013) 

after analyzing two sample activity networks concluded that if one 

assumes that Project Completion Time (PCT)s are normally 

distributed, PERT may lead to an approximately 10% to 30% more 

optimistic result. They recommended that PCT is not always 

normally distributed and its distribution and variability are affected 

by the distribution and variability of activity durations. Their best 

fitted distribution for most activity distribution was found to be 

normal and the difference in completion probabilities between 

Normal PDF and best fit (known to be Lognormal) PDF for Weibull, 

Lognormal, Exponential, was 3%, 8% and 11% respectively.  

Finally Hajdu & Bokor (2016) after testing several 

distributions for activity durations concluded that instead of 

selecting the proper activity duration distributions, project 

experts have to devote more effort to precisely determining the 

activity durations. Because from a practical point of view, using 

different activity duration distributions does not result in 

significant differences. They found that the precision of the 

three-point estimation plays a much more important role in 

determining the project makespan. 

Burgelman & Vanhoucke (2019) focused on Markovian PERT 

networks in which activity durations are exponentially distributed 

random variables. Although their assumed activity durations 

followed the same distribution, but they noticed that no general 

analytic solution would exist to derive project makespan 

distributions. They assessed the performance of several methods 

addressed in the literature both from the theoretical and 

managerial point of view and introduced a new benchmark dataset 

to generate Markovian PERT networks. 

Hernandez-Bastida & Fernandez-Sanchez (2018) evaluated 

some extreme distributions with different assumed probability 

distribution functions satisfying position matching with three 

estimates (a, b, and m) given by experts. They showed that if the 

additional information is incorporated (in a form that expert 

indicates the probability of an interval), estimates for mean and 

variance differ very significantly. And finally, they concluded that 

no additional assumption could be incorporated into the 

distribution of activities unless it is fully justified. 

Despite its ease of use arose from its long history, the PERT 

method is still an active research field; therefore the original PERT 

mean and variance (1-2) are still highlighted in popular operations 

research textbooks (see, e.g., Hillier and Lieberman, 2010; 

Winston, 2004).  

MacCrimmon and Ryavec (1964) analyzed the assumptions 

used in PERT and highlighted four possible sources of error. 

Among them, the two most important are: the approximation 

formula for the mean and the variance. They also showed that the 

calculated mean for project makespan will always be 

optimistically an underestimate, but the calculated variance may 

be biased in either direction. 

Kim et al. (2014) recommended using 5th, 10th, 90th, and 95th 

percentiles instead of common percentiles P0 and P100 used in 

classical PERT. They evaluated the accuracy of a wide range of PERT 

mean-variance estimation formulas and proposed new sets of weights 

for each set of three estimates P5, P50, and P95. The important 

assumption that they ignored was the way these estimates are 

gathered. Since the estimates are gathered by reference to experts’ 

opinion; usually it is easier and therefore more accurate to ask experts 

for estimating the mode of the distribution than the median (i.e. P50 

in their notation) than estimating P5, P50, and P95 percentiles.  

Hajdu & Bokor (2016) argued that the precision in estimating 

the three-point plays a much more important role in determining 

the mean and variance of activity durations. Sackey and Kim 

(2019) proposed heuristic estimating relations for mean value and 

variance of activity durations based on three given estimates as: 

    2[ ] 0.025 0.95 0.025 , [ ] [( ) / 6.43]E X a m b Var X b a          (9) 

Their proposed expressions had no analytical proof for yielding 

better results than classic PERT but they conducted a simulation 

on five case studies and showed that their proposed modified 

PERT gives a better mean error rate than the classic PERT. 

Herrerias-Velasco et al. (2011) provided a more accurate 

expression for estimating the PERT variance. They developed a 

method to find parameters of beta distribution in which their 

estimated beta distribution has the same distribution mode as 

expressed by experts while the original PERT mean expression 

was verified. Also, they concluded that, in general, their proposed 

estimate for mean was very accurate. Then it was verified by 

(Ballesteros-Perez, 2017). 
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Ballesteros-Perez (2017) suggest a sequential merging 

process named as M-PERT which is a consecutively reduction 

technique to convert a network of activities into a new single 

merged activity with calculated mean and variance for 

duration. The most important shortcoming of his proposed 

procedure is disregarding merge event bias. His proposed 

formulas for estimating mean and variance for every resulted 

merge activity lacks the precision for estimating the sample 

maximum statistic. Merge event bias was observed within the 

first days of implementing PERT in the U.S. Air Force 

projects, in which the consistent and systematic errors was 

evidencing in project forecasts (Ballesteros-Perez, 2017). 

Elmaghraby (2005) noted that the fallacy of PERT is replacing 

the random durations by their mean values to determine the 

project makespan. It is not “practical” to replace the 

randomness with an equivalent certain value in the form of 

Expected value if uncertainty is inherently still available in the 

activity durations. 

Despite the simplicity and widespread adoption of the original 

PERT and its alternative extensions, neglecting the merge event 

bias, significantly underestimated the duration average and 

overestimated the duration variance of real-life projects. Therefore, 

its simulation-based rival which yields more accurate solutions was 

proposed by van Slyke (1963) only less than five years after PERT 

was born. Monte Carlo method relays on extensive sampling runs 

and yields criticality index of each activity, therefore some 

researchers tried to infer statistical distributions for completion time 

of project or individual activities, e.g. Milian (2008) introduced the 
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idea of a positively correlated random variable called as control 

variable for estimating the probability distribution of the project 

duration. Using the Monte Carlo method requires software 

implementations, therefore it has not yet received wider application 

“on the field” by practitioners and project managers (Avlijas, 2018). 

Since uncertainty typically does not allow a treatment based on 

averages (Elmaghraby, 2005), we propose a novel estimate for 

mean and variance of merge event.  

For instance, consider two activities A and B. Both of them sink 

to a merge event denoted as P. Suppose that the durations of 

activities A and B denoted as TA and TB respectively, are a random 

variable. Therefore, the completion time of both activities A and B 

denoted by TP is random variable. Formally, TP can be defined by 

the expression as: 
 

         TP= max{TA, TB}. (11) 

It follows that: 

        E[TP] = E[max{TA, TB}]. (12) 

 

According to the traditional PERT method E[TP] is 

approximated as: 
 

    arg max{ [ ], [ ]},A BE T E T   (13) 

    [ ] ,PE T   (14) 

    2[ ] .PVar T   (15) 

 

This approximation results it well-known shortcomings of 

PERT in underestimation of E[TP] and overestimating Var[TP]. In 

fact, the gap between the exact value of  E[TP] and the estimated 

value   presented by PERT, increases with the number of 

parallel activities sinking to the merge event (Pontrandolfo, 2000).  

In statistics, TP is known as a statistic called ‘sample maximum’. If all 

TA, TB, TC,… are Identically Independently Distributed (IID) random 

variables, there are various upper/lower bounds recommended for mean 

value and variance of TP by several researchers.  

The earliest bounds on sample max are published by Gumbel 

(1954) and Hartley and David (1954) when considering an 

arbitrary population mean 0 and variance 1: 
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If the probability distribution is symmetric about zero, they 

proposed the following bound: 
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(17) 

Balakrishnan and Rao (1998) quoted the universal bound for the 

mean of the sample max from any continuous distribution with  

mean   and variance 2  as: 
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And in case of continuous symmetric distribution a tighter 

universal bound as: 
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(19) 

Moriguti (1951) recommends the following upper and lower 

bounds on the variance of the sample max of a symmetric 

population: 

      2 2
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Where σ2 corresponds to variance of the population. He also 

provides a relation for coefficient of variation of sample max:  
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In which Xn:n is the sample maximum and n is the sample size.  

Papadatos (1995) proved an upper bound for sample max drawn 

of a set of n iid random variables Xi as:  

      2

:[ ]n nVar X n  (22) 

Arnold and Groeneveld (1979) proposed the following bounds 

on the mean value and variance of the i'th order statistics denoted 

as Xi:n .  
 

:
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Rychlik (2008) proved the following bound: 
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In which Xi is an arbitrary dependent identically distributed random 

variable with a finite variance   and Xi:n denotes the i'th order statistic 

of the sample with homogeneous variance and mean value.  

The above bound when i = 1 or n is presented for a finite 

population with size N (Balakrishnan et al., 2003) as: 
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N n
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N
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Bertsimas et al. (2006) prooved the optimality of the following 

tight upper bound on the expected value of the highest order 

statistic Xn:n: 
 

     :sup [ ] 1.n nE X n     (26) 

 

In which each random variable Xi follows an arbitrary 

distribution θ with identical mean–variance pair μ and σ2. If each 

variable Xi has individual mean–variance pair μi and σ2
i they 

proposed the following two closed-form upper bounds on the 

expected value of the highest order statistic:  
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Aven (1985) proved two bounds on the expected maximum 

(minimum) for non-identically distributed variables: 
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Several useful bounds on mean and variance of sample maximum and 

sample minimum are reviewed by Arnold et al. (2008), Balakrishnan 

and Rao (1998) and Rychlik (1998). We refer the interested readers to 

those papers for more detailed results about order statistics. 
 

4. Developed Methods 

 

4.1. New Upper Bounds on Mean and Variance of 

Sample Max 

All the above reviewed papers provide bounds for sample max 

drawn from a single population; except Bertsimas et al. (2006) 

who provide bounds on mean value of sample max drawn from 

different populations (Eq. 18-19). In this section we use the 

following notation to present novel bounds and estimates of mean 

and variance of sample max/min. 
 

Table 1. Notation used 

 

Statistic Point Estimator Upperbound 
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Based on numerous experiments, we introduce the following 

upper bounds on variance for sample max/min. Every random 

variable Xi is assumed to follow an arbitrary distribution with 

mean and variance, μi and σi2 respectively. 
 

      [ ] [ 1]max { } max { }
L

SD Xn i SD X i
i ActiveSet i ActiveSet

UB UB 
 

 
U

 (33) 

Active SetU is the set of effective variables, i.e. all random variables 

(following beta, triangular, or uniform distribution and satisfying: ai < 

xi <bi) having their upper limit bi greater than the lower limit ai of the 

random variable with the biggest mean value, and Active SetL is the 

set of effective variables; in other words, the set of all random 

variables having their lower limit ai smaller than the upper limit bi of 

the random variable with the smallest mean value. 
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We introduce the following point estimators for mean value and 

variance of sample max and sample min:  
 

      µ   µ  : 1:[ ] max [ ] min
LU

n n i i n i i
i ActiveSeti ActiveSet

E X E X   


     (34) 

 

4.2. Regression Tree (RT) 

Regression trees preserve the advantages of both regression 

analysis and decision trees. Regression analysis as a statistical 

procedure that tries to fit a function to a set of observations in order 

to model the relationship between a dependent with one (/some) 

independent variable(s). In tree regression, constructing tree-like 

structures is inherited from decision trees and therefore all 

observations are clustered by repeated splits on the instances of each 

parent node, creating if-then-else rules (Gkioulekas & 

Papageorgiou, 2021). Such models are computed quickly and 

simply interpreted. Since RT is recently introduced in operations 

research as a stochastic data mining tool, some optimization 

improvements are investigated by researchers to enhance its 

performance such as Bertsimas et al. (2021). 

For example, the regression tree for data points presented in 

Table 2 is illustrated in Figure 1 which can estimate the output 

variable y with a MSE less than 17.7. 

In order to estimate the mean value and Standard Deviation (SD) 

of sample maximum/minimum as a dependent variable, a set of 

features is to be defined based on the mean and variance of the 

duration of activities sinking into the merge event. Heuristically a 

set of features is selected as showed in Table 3. The same features 

would be selected for constructing RT3 and RT4 with some tiny 

modification by replacing maximum with minimum operator. The 

random variable with biggest mean is denoted by index κ and the 

random variable with the second biggest mean is denoted by index 

η. Among all activities sinking into a merge event, a subset of 

activities called as ‘Active set’ or ‘effective activities’ is selected. 
 

Table 2. Sample data for illustrative regression tree 

 

input Output 

x1 x2 Y 

2 12 2 

4 12 2 

6 12 2 

8 20 3 

10 25 5 

12 26 20 

16 60 100 

18 65 100 

20 73 100 

22 70 100 

24 50 70 

26 52 60 

28 52 50 

32 51 18 

34 54 4 

36 55 3 

38 56 2 

 

 

Figure 1. Regression Tree for data shown in Table 2 

 

 

4.3. Trended Regression Tree (TRT) 

Traditional RT’s stop with a binary tree that at each of its 

terminal leaf c, a value of cy  represents the average output 

variable for all the instances assigned to that leaf.  This kind of 

averaging the output variables , ( )iy i c  may ignore some useful 

information behind the values of input variables , , ( )i mx i c . 

Therefore, we prefer to develop a linear regression function at 

each terminal leaf. Specifically, after the full size RT is produced, 

we perform a correlation analysis and then a linear independency 

analysis. We perform a correlation analysis to avoid over fitting 

regression line, eventually less correlated variables with the output 

variable are ignored. i.e. the input variables that have an absolute 

value of correlation coefficient with response variable less than 

65th percentile of all correlation coefficients are ignored. 

Linear independency analysis is also performed at each leaf to 

distinguish the independent variable set based on the instances 

assigned to each leaf.  This analysis is done because some leaf may 

have fewer instances than required for regression. Making a linear 

independency analysis is done by performing a Gauss-Jordan 

elimination to find Reduced Row Echelon form. By selecting 

independent columns, a linear regression model is fitted for each 

node. Fig.2 depicts a sample Trended Regression Tree (TRT). 

 

 
 

 

Figure 2. Trended Regression Tree for data shown in Table 2 

Y=100 

Y = -7.4465 x1 + 5.6359 x2 

+ -36.5128 
Y = - 0.022603 x1 + 0.21918 

x2 + - 0.61507 
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5. Experimental Results 

 In order to analyze the efficiency of proposed estimates for 

mean and variance of project completion time three training 

datasets of random activities following triangular/beta/uniform 

distributions with three-point estimates (a, b, and m) are 

generated; a is selected with a random distribution as uniform(80, 

100); b is selected such that the distance between a and b follows 

a random uniform distribution between [0, 0.2*a], and m (for 

triangular and beta distributions) is selected with a uniform 

distribution between a and b. In order to calculate the observed 

mean value and Standard Deviation (SD) of sample max/min, 

2000000 observations were made for each merge event. Three 

other validation dataset are generated to test the validity of the 

results generated by regression trees and trended regression trees. 

Four regression trees RT1, RT2, RT3, and RT4 are constructed for 

estimating mean value of sample maximum, SD of sample maximum, 

mean value of sample minimum, and SD of sample minimum 

respectively. Four Trended Regression Trees TRT1, TRT2, TRT3, 

and TRT4 are also constructed for the same reason. All the 

experiments are codded in MATLAB R2018a. Table 3 summarizes 

the notation used for bounds and estimates in the literature compared 

with proposed ones. 

 

 

 
Table 3. Selected features of merging activities for establishing RT 1 and RT 2 

 

Type Definition Formula Symbol RT 1 RT 2 

In
p

u
t 

Number of effective activities merging n x1 ● ● 

Gap between two biggest means     x2 ● ● 

SD Ratio of two variables with biggest means 







 x3 ● ● 

Relative gap between PERT Var & Max Var to the range of SD’s 

max { }

max { } min { }

U

UU

i
i ActiveSet

i i
i ActiveSeti ActiveSet

 

 








 x4 ● ● 

Relative gap between two biggest means to the sum of their SD. 
 

 

 

 




 x5 ● ● 

SD of the activity with the biggest mean   x6 ● ● 

SD of the activity with the second biggest mean 
  x7 ● ● 

Ratio of SD of the activity with the second biggest mean to gap between 

 two biggest means 



 



 
 x8 ● ● 

gap between two biggest means plus the sum of their SD.         

 

x9 ● ● 

gap between two biggest means plus the gap of their SD.         

 

x10 ● ● 

Average of means of effective activities 
1

U

i

i ActiveSetn
 



 

 

x11 ● ● 

SD of means of effective activities  
21

U

i

i ActiveSetn
 





 

x12 ● ● 

Range of means of effective activities max { } min { }
UU

i i
i ActiveSeti ActiveSet

 




 

x13 ● ● 

Mean of SD’s of effective activities 
1

U

i

i ActiveSetn
 



 

 

x14 ● ● 

SD of SD’s of effective activities  
21

U

i

i ActiveSetn
 





 

x15 ● ● 

Range of means of effective activities max { } min { }
UU

i i
i ActiveSeti ActiveSet

 


  x16 ● ● 

Relative 3 sigma head of two variables with biggest means 
3

3

 

 

 

 




 x17  ● 

Gap between 3 sigma head of two variables with biggest means 3 ( 3 )          x18  ● 

Coefficient of variation of the variable with the biggest mean 







 x19  ● 

Coefficient of variation of variable with the second biggest mean 







 x20  ● 

● : used as input variable.    : used as output variable. 
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Table 4. Output features of merging activities for establishing RT 1 and RT 2 

 

Type Definition Formula Symbol RT 1 RT 2 

O
u
tp

u
t 

Relative gap between expected value of sample max and the biggest mean 
:[ ]n nE X 








 y1

 

  

Ratio of sample max SD to the SD of the variable with the biggest mean 
:[ ]n nVar X


 y2   

 

 
Table 5. The number of instances grouped by the number of effective activities for calculating sample max in each dataset 

 

 
Distribution 

Number of Effective Activities 
Total 

1 2 3 4 5 6 7 8 9 10 

DATASET1 Tri. 655 1664 1547 1551 1384 1025 655 337 149 33 9000 

DATASET2 Beta 704 1605 1651 1481 1345 1029 695 333 126 31 9000 

DATASET3 Unif. 661 1627 1624 1549 1324 1027 637 341 171 39 9000 

DATASET4 Tri. 278 1014 2362 3715 3978 3099 1928 1101 429 96 18000 

DATASET5 Beta 229 1116 2446 3707 3923 3005 2007 1066 410 91 18000 

DATASET6 Unif. 263 1003 2408 3708 3965 3015 2008 1055 455 120 18000 

 

 
Table 6. Notation used for numerical experiments 

 

Symbol Reference Eq. No. Symbol Reference Eq. No. 

RT1 RT1  RT3 RT3  

Mumax_PERT PERT (14) Mumin_PERT PERT (14) 

Mumax_BalaA Balakrishnan and Rao (1998) (18) Mumin_AGu Arnold and Groeneveld (1979) (23) 

Mumax_BalaB Balakrishnan and Rao (1998) (19) Mumin_AGl Arnold and Groeneveld (1979) (23) 

Mumax_AGu Arnold and Groeneveld (1979) (23) Mumin_AGu2 Arnold and Groeneveld (1979) (23) 

Mumax_AGu2 Arnold and Groeneveld (1979) (23) Mumin_AvenA Aven (1985) (31) 

Mumax_AGl Arnold and Groeneveld (1979) (23) Mumin_AvenB Aven (1985) (32) 

Mumax_AvenA Aven (1985) (29) 
 µ 1:[ ]nE X  

 (34) 

Mumax_AvenB Aven (1985) (30)    

Mumax_Bu Bertsimas et al. (2006) (27)    

Mumax_Bl Bertsimas et al. (2006) (28)    

µ
:[ ]n nE X  

 (34)    

      

RT2 RT2  RT4 RT4  

SDmax_PERT PERT (15) SDmin_PERT PERT (15) 

SDmax_MorigU Moriguti (1951) (20) SDmin_MorigU Moriguti (1951) (20) 

SDmax_MorigL Moriguti (1951) (20) SDmin_MorigL Moriguti (1951) (20) 

UBSD[Xn]  (33) UBSD[X1]  (33) 

 

5.1. Regression Tree vs. others 

As it can be seen in Fig.2 the proposed RT1 estimates the mean 

value of sample max with the least relative Mean Absolute Error 

(MAE). Although PERT has a small error as compared with other 

bounds reviewed in the literature, but it is outperformed in 

competition with RT1. The other and more important advantage 

of RT1 over PERT for estimating sample max is declared when 

we focus on its trend over increasing the number of activities. 

When the number of activities increased, PERT commits a 

significantly increasing error (Fig.5). 

Fig.4 illustrates relative MAE of the proposed RT2 and other 

estimates for SD of sample max. As it can be seen RT2 prepares the 
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least relative MAE. Although PERT has a small error as compared 

with other bounds, but it loses the competition if compared with 

RT2. Error rate of RT2 has no significant trend over increasing the 

number of activities as compared with PERT (Fig.6). Increasing 

trend of relative MAE for PERT and RT1 and RT2, seems to be 

suppressed into a deceasing trend; this decrement may be caused by 

decreasing appeared in the at this point. Since the activity durations 

are random numbers, after producing equal number in each group of 

activity number, the number of effective activities is calculated 

based on generated random numbers. 

 

 
 

Figure 3. Relative MAE for several methods estimating mean of sample maximum 

 

 

 
 

Figure 4. Relative MAE for several methods estimating SD of sample maximum 

 

 

 
 

Figure 5. Relative MAE for the results generated by RT1 and PERT for estimating 

mean of sample maximum versus the number of effective activities 

 
 

Figure 6. Relative MAE for the results generated by RT2 and PERT for estimating SD 

of sample maximum versus the number of effective activities 

 

 
Relative MAE is calculated as: 
 

    
Relative MAE

   

observed vlue by simulation estimated vlue

observed vlue by simulation


  

 

RT3 provides good estimates for mean value of sample minimum 

as compared with other reviewed bounds (Fig.7) and has no 

significant trend by increasing the number of activities as compared 

with its best rival, PERT (Fig.9). RT4 provides better estimates for 

SD of sample minimum as compared with other reviewed bounds 

(Fig.8) and has no significant trend by increasing the number of 

activities as compared with its best rival, PERT (Fig.10). 

 

 
 

Figure 7. Relative MAE for several methods estimating mean of sample minimum 

 

 

 
 

Figure 8. Relative MAE for several methods estimating SD of sample minimum 
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Figure 9. Relative MAE for the results generated by RT3 and PERT for estimating 

mean of sample minimum versus the number of effective activities 

 

 

 
 

Figure 10. Relative MAE for the results generated by RT4 and PERT for estimating 

SD of sample minimum versus the number of effective activities 

 

 
In this paper we recommended two heuristic upper bounds for mean 

and SD of sample Max/Min, denoted as µ µ
1: :[ ], [ ]n n nE X E X  ,UBSD[X1] and 

UBSD[Xn]. The success rates for these bounds in bounding their 

respective statistic is depicted in Fig.11. Although these bounds have 

large offset with the observed value as shown previously in Fig.4 and 

8, but they are capable of providing a strong bound with almost 100% 

success rate. Among the other bounds reviewed in the literature, 

Mumax_AGu, Mumax_AvenA, Mumax_AvenB, Mumax_Bu, Mumax_Bl provide a 

100% success rate for upper bounding mean of sample max; and  

Mumin_AGl, Mumin_AvenA, Mumin_AvenB provide a 100% success rate for 

lower bounding mean of sample min. 
 

 

 
Figure 11. Success rate for several upper bounds developed 

Developed regression trees are generated based on 9000 sample 

each one with 2000000 simulation runs. In order to validate the 

accuracy of RT1, RT2, RT3, and RT4, three new datasets numbered 

as 4-6 of random activities were generated following triangular (tri), 

beta and uniform (uinf) distributions. Each set contains 18000 sample 

projects consisting of a single merge event. In order to calculate 

observed statistics, 2000000 simulation runs are actuated. Relative 

MAE of all developed estimates is summarized in Fig.12-13. 
 

 

 
 

(a) 
 

 
 

(b) 

 

Figure 12. Relative MAE of TR1 and RT2 compared with other methods across 

training and validation data 

 

 

 
 

(a) 
 

 
 

(b) 

Figure 13. Relative MAE of TR3 and RT4 compared with other methods across 

training and validation data 
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As it is seen, in all cases the regression trees build based on primal 

9000 random activities with triangular distribution, outperforms 

other best rivals even when dealing with new 18000 sample projects 

with other activity distributions. This proves the efficiency of using 

developed regression trees for every new instance problem. 

 

5.2. Trended Regression Tree vs. Regression Tree and 

Cross-Valiation 

After proofing the superiority of Regression Trees over PERT and 

other estimates in predicting sample max/min statistics, it’s time to 

make the same comparison between RT and TRT and selecting 

which dataset to use as training dataset for gaining better results.  

As it was mentioned earlier, four Regression Trees are made for 

calculating: 

 

 Mean value of sample max 

 Standard deviation of sample max 

 Mean value of sample min 

 Standard deviation of sample min. 

 

Four other Trended Regression Trees are also made to calculate the 

same statistics. Generating RT and TRT is repeated three times for 

each of three training datasets of different probability distributions. 

The performance of all these 24 RT’s and TRT’s is evaluated when 

dealing with activities of different probability distribution. The results 

are depicted in Fig.14-15. The most reliable results of RT and TRT 

are defined as: having no extra oscillations when dealing with unseen 

data as compared with its performance when dealt with training data. 

In Fig.14-15 the performance chart of each most reliable RT or TRT 

is highlighted in bold. Based on our experimentations: 

 

 Mean value of sample max is to be calculated with a TRT 

trained by a dataset following a uniform probability 

distribution. 

 Standard deviation of sample max is to be calculated with 

a RT trained by a dataset following a beta probability 

distribution. 

 Mean value of sample min is to be calculated with a TRT 

trained by a dataset following a triangular probability 

distribution. 

 Standard deviation of sample min is to be calculated with a RT 
trained by a dataset following a beta probability distribution. 

 

 
 

 (a) 

 
 

(b) 

 
Figure 14. MAE of several RT and TRT which are made based on training data with 

Triangular (Tri.), Beta (Beta), and Uniform (Unif.) distribution when dealing with 

unseen data with different distributions to predict: 

(a) mean value of sample maximum, and (b) standard deviation of sample maximum 

 
 
 

 
 

 (a) 

 
 

 
 

 (b) 

 
Figure 15. MAE of several RT and TRT which are made based on training data with 

Triangular (Tri.), Beta (Beta), and Uniform (Unif.) distribution when dealing with 

unseen data with different distributions to predict: 

 (a) mean value of sample minimum, and (b) standard deviation of sample minimum 
 
 

6. Concluding Remarks 

 In this paper, we introduced the notion of Trended Regression 

Trees (TRT) for the first time. Estimating mean and SD of sample 

max and sample min with TRT yields promising performance 

measures. These findings could be used to enhance PERT to 
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calculate more precise results for project makespan. Also we 

recommended four bounds for these statistics.  

Trended Regression Trees are more promising than every other 

method for interpolating complex functions. For example we tried 

to make our estimates using genetic programming, Artificial 

Neural Networks or clustering, but no one of the results was 

comparable with RT’s or TRT’s. 

One of the most important results of using TRT’s in estimating 

values of some function is its clear box nature; i.e. by not trying to 

map an unknown function, TRT just assigns the new data to a 

cluster of previously observed data. Finally, the TRT is expressed 

in form of some if-else conditional expressions and a regression 

equation. Therefore, it is recommended as a easily understood tool 

for moelling systems. TRT can explain complex systems by local 

linear equations. Future potential applicaions of TRT are extended 

to disigning expert systems, desition rules extraction, case based 

resoning, … . 

Nowadays, risk analysis of real world projects is actuated on 

powerful computers by running million runs of Monte Carlo 

simulation. By using TRT it is possible to refine the results of 

PERT; and eventually more precise results of scheduling 

probabilistic projects would be generated on handheld devices or 

even mobile cellphones. It will make it easier and perhaps 

requiring less time to report criticality index of activities as good 

as simplifying scenario analysis and several other calculations for 

real world probabilistic projects on the go. i.e. we can develop 

simple android applications for handheld devices with less 

hardware capabilities in wich can provide the same accuracy of 

expensive commercial software packages for planning with 

stochastic activity durations. 

 
 

References 

[1] Arnold, Barry C.; N. Balakrishnan, H. N. Nagaraja. (2008). A 

First Course in Order Statistics, Classics in applied 

mathematics; 54, SIAM, Philadelphia, USA. 

[2] Arnold, B.C., & Groeneveld, R.A. (1979). Bounds on 

Expectations of Linear Systematic Statistics Based on 

Dependent Samples. Annals of Statistics, 7, 220-223. Erratum 

in Ann. Statist. 8, 1401. 

[3] Aven, T. (1985). Upper (lower) bounds on the mean of the 

maximum (minimum) of a number of random variables. 

Journal of Applied Probability. 22 (3), 723-728. 

[4] Avlijas, G. (2018). Examining the value of Monte Carlo 

simulation for project time management. Journal of 

Sustainable Business and Management Solutions in Emerging 

Economies, pp. 1–11, DOI: 

10.7595/management.fon.2018.0004. 

[5] Balakrishnan, N. and C. R. Rao (1998). Order Statistics: An 

Introduction, , in: Order Statistics: Theory & Methods 

(Handbook of Statistics 16), edited by: N. Balakrishnan and 

C.R. Rao, Volume 16, Pages 105-145, Elsevier Science, 

North-Holland. 

[6] Balakrishnan, N., Charalambides, C., Papadatos, N. (2003). 

Bounds on expectation of order statistics from a finite 

population. Journal of Statistical Planning and Inference 113, 

569–588. 

[7] Ballesteros-Perez, P. (2017). M-PERT: Manual Project-

Duration Estimation Technique for Teaching Scheduling 

Basics. Journal of Construction Engineering and 

Management, 143(9): 04017063-1:13. 

[8] Bertsimas, D., Dunn, J., Wang, Y. (2021). Near-optimal 

Nonlinear Regression Trees, Operations Research Letters, 

49(2), Pages 201-206. 

[9] Bertsimas, D., Natarajan, K., Teo, C.-P. (2006). Tight Bounds 

On Expected Order Statistics, Probability in the Engineering 

and Informational Sciences, 20(4), 667 - 686. 

[10] Bordley, R. F., Keisler, J. M., Logan, T. M. (2019). 

Managing Projects with Uncertain Deadlines, European 

Journal of Operational Research, 274, 291-302. 

[11] Burgelman, J., Vanhoucke, M. (2019). Computing project 

makespan distributions: Markovian PERT networks revisited. 

Computers and Operations Research, 103, 123-133. 

[12] Chu, W.-M., Chang, K.-Y., Lu, C.-Y., Hsu, C.-H., Liu, C.-

H., Hsiao, Y.-C. (2014). A New Approach to Determine the 

Critical Path in Stochastic Activity Network, Mathematical 

Problems in Engineering, , 2014, 547627, 1-13. 

[13] Elmaghraby, S. E. (2005). On the fallacy of averages in 

project risk management, European Journal of Operational 

Research, 165, 307–313 

[14] Gkioulekas, I., Papageorgiou, L.G. (2021). Tree regression 

models using statistical testing and mixed integer 

programming, Computers & Industrial Engineering, 153, 

107059. 

[15] Golenko-Ginzburg, D., Gonik, A. (1998). A heuristic for 

network project scheduling with random activity durations 

depending on the resource allocation. International Journal of 

Production Economics, 55, 149-162. 

[16] Hajdu, M., Bokor, O. (2016). Sensitivity analysis in PERT 

networks: Does activity duration distribution matter?. 

Automation in Construction, 65, 1–8. 

[17] Hajiali, M., Mosavi, M.R., and Shahanaghi, K. (2020). A 

new decision support system at estimation of project  

completion time considering the combination of artificial  

intelligence methods based on earn value management 

framework, International Journal of Industrial Engineering: 

Theory, Application and Practice 27(1), 1-12. 

[18] Hernandez-Bastida, A., Fernandez-Sanchez, M. P. (2018). 

How adding new information modifies the estimation of the 

mean and the variance in PERT: a maximum entropy 

distribution approach, Annals of Operations Research, 274, 

291-308. 

[19] Herrerıas-Velasco, J.M., Herrerıas-Pleguezuelo, R., van 

Dorp, J.R. (2011). Revisiting the PERT mean and variance. 

European Journal of Operational Research, 210, 448–451. 

[20] Hillier, F.S., Lieberman, G.J. (2010). Introduction to 

Operations Research, 9th Edition, Mc Graw-Hill, New York, 

NY. 

[21] Kelley, J.E., Walker, M. (1959). Critical-Path Planning and 

Scheduling. Proceedings of the Eastern Joint Computer 

Conference, IRE-AIEE-ACM '59 (Eastern). 

[22]Kim, S.D., Hammond, R.K., Bickel, J.E. (2014). Improved 

Mean and Variance Estimating Formulas for PERT Analyses, 

IEEE Transactions n Engineering Management, 61(2), 362-369. 

[23] Lee, D.-E., Arditi, D., Son, C.-B. (2013). The Probability 

Distribution of Project Completion Times in Simulation-based 

Scheduling, KSCE Journal of Civil Engineering, 17(4), 638-645. 

[24] MacCrimmon, K. R., Ryavec, C. A. (1964). An analytical 

study of the PERT assumptions, Operations Research, 12(1), 

16–37. 



International Journal of Industrial Engineering & Management Science, Vol. 9, Issue 1, (2022) 2-14 

 

[25] Malcolm, D.J., Roseboom, J.H., Clark, C.E. and Fazar, W. 

(1959). Application of a technique for research and 

development program evaluation. Operations Research, 7: 

646-669. 

[26] Milian, Z. (2008). Monte Carlo Simulation with Exact 

Analysis for Stochastic PERT Networks. Proceedings of the 

25th International Symposium on Automation and Robotics in 

Construction, Vilnius, Lithuania, 598-603. 

[27] Moriguti, S. (1951). Extremal properties of extreme value 

distributions. Annals of Mathematical Statistics, 22, 523–536. 

[28] Nekoufar, M., Movafaghpour, M.A. (2017). Assessing the 

Effectiveness of a Single Curriculum for a Group of Students 

with Different Mathematics Literacy. Journal of Interpolation 

and Approximation in Scientific Computing, 2, 38-48. 

[29] Papadatos, N. (1995). Maximum Variance of Order 

Statistics, Maximum Variance of Order Statistics, Annals of 

the Institute of Statistical Mathematics, 47(1), 185-193. 

[30] Pontrandolfo, P. (2000). Project duration in stochastic 

networks by the PERT-path technique. International Journal 

of Project Management, 18, 215-222. 

[31] Rostami, S., Creemers, S., & Leus, R. (2018). New 

strategies for stochastic resource-constrained project 

scheduling. Journal of Scheduling, 21, 349-365.  

[32] Rychlik, T. (1998). Bounds for expectations of L-estimates, 

in: Order Statistics: Theory & Methods (Handbook of 

Statistics 16), edited by: N. Balakrishnan and C.R. Rao, 

Volume 16, 105-145, Elsevier Science, North-Holland. 

[33] Rychlik, T. (2008). Extreme variances of order statistics in 

dependent samples. Statistics and Probability Letters, 78, 

1577–1582. 

[34] Sackey,  S. Kim, B.-S. (2019). Schedule Risk Analysis using 

a Proposed Modified Variance and Mean of the Original 

Program Evaluation and Review Technique Model, KSCE 

Journal of Civil Engineering, , 23, 1484-1492. 

[35] van Slyke, R. M. (1963). Monte Carlo Methods and the 

PERT Problem. Operations Research, 11(5), 839-860. 

[36] Winston, W.L., 2004. Operations Research, Applications 

and Algorithms. Duxbury Press, Pacific Grove. 

[37] Yan, H.-S., and Shang, Z.G. (2019). Product design time 

forecast using relative entropy kernel regression. International 

Journal of Industrial Engineering: Theory, Application and 

Practice, 26(3), 343-360. 

[38] Yao, M.-J., Chu, W.-M. (2007). New approximation 

algorithm for obtaining the probability distribution function 

for project completion time. Computers and Mathematics with 

Applications, 54, 282–295. 

[39] Zhen-ting, H., Xuan, Z., Xiang-Xing, K. (2010). A new 

analytical algorithm for computing probability distribution of 

project completion time. Journal of Central South University 

of Technology, 17: 1006−1010. 

 


