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1. Introduction 

Recently, the mixed convection flows, combined forced and free 

convection flows occur in many transport processes of natural and 

engineering devices, such as, nuclear reactors cooled during emergency 

shutdown, heat exchangers placed in a low velocity environment, etc. 

[1, 2, 3]. Such a process occurs when the effect of the buoyancy force in 

forced convection or the effect of forced flow in free convection 

becomes significant. The effect is especially pronounced in situations 

where the forced flow velocity is low and the temperature difference is 

large [4]. Mixed convection flow of a viscous and incompressible fluid 

over various geometries, such as, flat plates, moving sheets, cylinders 

and spheres has been performed and correlations obtained for each one. 

Kumari and Nath [1, 5] studied the effects of localized cooling/heating 

and injection/suction on the mixed convection flow on a thin vertical 

cylinder. Aydin and Kaya [6] numerically studied the problem of steady 

laminar magneto hydrodynamic (MHD) mixed convection heat transfer 

about a vertical slender cylinder. Kuiken [7] investigated radial 

curvature effects on axisymmetric free convection boundary layer flow 

for vertical cylinders and cones for some special non-uniform 

temperature differences between the surface and the ambient fluid. Lok 

et al. [8] studied the unsteady mixed convection boundary-layer flow of 

a micropolar fluid near the region of the stagnation point on a double-

infinite vertical flat plate. Hassanien and Gorla [9] presented boundary 

layer solutions to study the effects of buoyancy on forced convective 

micropolar fluid flow and heat transfer in stagnation flows using the 

theory of micropolar fluids formulated by Eringen. Ishak et al. [10] 

analyzed theoretically (numerically) the effects that blowing/injection 

and suction have on the steady mixed convection or combined forced 

and free convection boundary layer flows over a vertical slender 

cylinder with a mainstream velocity and a wall surface temperature 

In this research, an analysis is carried out to study the effects that blowing/injection and suction on 

the steady mixed convection or combined forced and free convection boundary layer flows over a 

vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to 

the axial distance along the surface of the cylinder. To study the problem, the non-linear partial 

differential equations and their associated boundary conditions are transformed into coupled non-

linear ordinary differential equations. In this paper, we have solved this equation by a newly 

developed spectral collocation method based on Bessel functions of the first kind and also to compare 

the skin friction, we used the shooting method. After solving the problem, we have discussed about 

the values of the skin friction coefficient, the local Nusselt number, curvature parameter, buoyancy 

or mixed convection parameter and Prandtl number. Also, a comparison is made with the 

corresponding results to show reliability of presented method. 
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proportional to the axial distance along the surface of the cylinder. The 

fundamental governing equations for fluid mechanics are the Navier-

Stokes equations [11, 12, 13]. This inherently non-linear set of partial 

differential equations has no general solution, and only a small number 

of exact solutions have been found (see [14]). The importance of exact 

solutions is because the solutions represent fundamental fluid-dynamic 

flows and also owing to the uniform validity of exact solutions, the basic 

phenomena described by the Navier-Stokes equations can be studied 

more closely, and they act as standards for checking the accuracies of 

many approximate methods, whether they are numerical, asymptotic, or 

empirical. Explicit solutions are used as models for physical or 

numerical experiments, and often reflect the asymptotic behavior of 

more complicated solutions. All explicit solutions for the boundary layer 

equations are seemingly similar solutions in the sense that the 

longitudinal velocity component displays the same shape of profile 

across any transverse section of the layer, see Schlichting [15].  

Spectral methods, in the context of numerical schemes for 

differential equations, generically belong to the family of weighted 

residual methods (WRMs)[16]. WRMs represent a particular group 

of approximation techniques, in which the residuals (or errors) are 

minimized in a certain way and thereby leading to specific methods 

including Galerkin, Petrov-Galerkin, collocation and tau 

formulations. WRMs are traditionally regarded as the foundation 

and cornerstone of the finite element, spectral, finite volume, 

boundary element and some other methods [16]. The key 

components of their formulation are the trial functions and the test 

functions. The trial functions, which are the linear combinations of 

suitable trial basis functions, are used to provide an approximate 

representation of the solution. The test functions are used to ensure 

that the differential equation and perhaps some boundary conditions 

are satisfied as closely as possible by the truncated series expansion. 

This is achieved by minimizing the residual function that is 

produced by using the truncated expansion instead of the exact 

solution with respect to a suitable norm [16,17,18]. 

 In this paper, we attempt to use the Bessel functions of the first 

kind as basic functions for spectral-collocation method for solving 

a set of non-linear ordinary differential equations (ODE) with 

boundary conditions in the infinite. In the past, the Bessel 

functions collocation and Bessel polynomials collocation methods 

have been used for solving some problems, for example see [19, 

20, 21, 22], but now, we aim to use BFC method for solving set of 

ODE with conditions in the infinite. 

The rest of this paper is organized as follows: In Section 2, we describe 

the formulation of equations. In Section 3 the Bessel functions of the 

first kind is explained. In Section 4, we describe the function 

approximation and our proposed method. In Section 4.1, by applying the 

proposed method for solving the vertical slender cylinder equations. 

Finally, in the last section, we have described the concluding remarks. 

 

2. Formulation of Equations 

Let us consider a thin vertical circular cylinder of radius R with wall 

surface temperature proportional to the axial distance along the 

surface of the cylinder. Let 𝑈∞ and 𝑇∞ be velocity and temperature in 

the free stream, respectively. Fig. 1 illustrates the physical model and 

coordinate system. r shows the radial coordinate that is measured from 

the axis of cylinder and the axial coordinate x is measured vertically 

upwards such that 𝑥 = 0 corresponds to the leading edge, where the 

boundary layer thickness is zero, the fluid properties are assumed to 

be constant except the density changes which giving arise to the 

buoyancy forces. The viscous dissipation has been neglected in the 

energy equation. It is assumed that the injected fluid possesses the 

same physical properties as a boundary layer fluid and has a static 

temperature equal to the wall temperature. Under the above 

assumptions and taking into account the Boussinesq approximation 

equations of continuity, momentum and energy under boundary layer 

approximations governing the mixed convection flow over a thin 

vertical cylinder can be expressed as [23] 

 

 

             
𝜕

𝜕𝑥
(𝑟𝑢) +

𝜕

𝜕𝑟
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Figure 1. Physical model and coordinate system 

 

where 𝑈(𝑥) is the mainstream velocity, 𝑟 and 𝑥 are distances 

along the radial and axial directions, respectively, 𝑢 and 𝑤 are the 

velocity components along 𝑥 and 𝑟 directions, respectively, 𝑇 is 

the temperature, 𝑔 is the magnitude of the acceleration due to 

gravity, 𝛽 is the volumetric coefficient of thermal expansion, 𝛼 is 

the thermal diffusivity and 𝜈 the kinematic viscosity. Assuming 

that the appropriate boundary conditions are:   

 

𝑢 = 0 𝑤 = 𝑉 𝑇 = 𝑇𝑤   𝑎𝑡    𝑟 = 𝑅

𝑢 → 𝑈(𝑥) 𝑇 → 𝑇∞   𝑎𝑡    𝑟 → ∞
 (4) 

where 𝑉 is the constant velocity of injection (𝑉 > 0) or suction 

(𝑉 < 0). Further, we assume that the mainstream velocity 𝑈(𝑥) and 

the temperature of the cylinder surface 𝑇𝑤(𝑥) have the form 
 

 

 𝑈(𝑥) = 𝑈∞ (
𝑥

𝑙
),    𝑇𝑤(𝑥) = 𝑇∞ + Δ𝑇 (

𝑥

𝑙
, ) 

 
where 𝑙 is a characteristic length, 𝑈∞ is the characteristic velocity 

and △ 𝑇 is the characteristic temperature with △ 𝑇 > 0 for a heated 

surface and △ 𝑇 < 0 for a cooled surface. Ishak et al. [10] by using 

the similarity transformation reduced the above equations to a set 

of nonlinear ordinary differential equations. They introduced the 

similarity variables as follow 
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𝜂 =
𝑟2−𝑅2

2𝑅
√

𝑈

𝜈𝑥
, 𝜓 = √𝑈𝜈𝑥𝑅𝑓(𝜂),

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞

 (5) 

 

where 𝜓 is the stream function defined as 𝑢 = 𝑟−1𝜕𝜓/𝜕𝑟  and 

𝑤 = −𝑟−1𝜕𝜓/𝜕𝑥, which identically satisfy Eq. (1). By using this 

definition, we obtain 
 

𝑢 = 𝑈𝑓′(𝜂),     𝑤 = −
𝑅

𝑟
√

𝜈𝑈∞

𝑙
𝑓(𝜂), 

where primes denote differentiation with respect to 𝜂. In order 

that similarity solutions exist, 𝑉 has to be of the form 

 

𝑉 = −
𝑅

𝑟
√

𝜈𝑈∞

𝑙
𝑓0 

where 𝑓0 = 𝑓(0) and 𝑓0 < 0 is for mass injection and 𝑓0 > 0  is for 

mass suction. Substituting Eq. (5) into Eqs. (2) and (3), we can get 

the following ordinary differential equations 

 

 

       
(1 + 2𝛾𝜂)𝑓′′′ + 2𝛾𝑓′′ + 𝑓𝑓′′ + 1 − (𝑓′)2 + 𝜆𝜃 = 0 ,

(1 + 2𝛾𝜂)𝜃′′ + 2𝛾𝜃′ + 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃) = 0 ,
 (6) 

 

subject to the boundary conditions (4) which become 

 

 

           

𝑓(0) = 𝑓0, 𝑓′(0) = 0, 𝑓′(∞) = 1

𝜃(0) = 1, 𝜃(∞) = 0,
 (7) 

where 𝛾 is the curvature parameter and 𝜆 is the buoyancy or 

mixed convection parameter defined as 
 

            𝛾 = √
𝜈𝑙

𝑈∞𝑅2
    ,    𝜆 =

𝑔𝛽𝑙△𝑇

𝑈∞
2  (8) 

respectively. In Eq. (8), 𝜆 > 0 and 𝜆 < 0 correspond to the aiding 

flow (heated cylinder) and to the opposing flow (cooled cylinder), 

respectively, while 𝜆 = 0  represents the pure forced convection 

flow (buoyancy force is absent). It is worth mentioning that the 

similarity solution of Eqs. (6) and (7) is not necessarily the only 

solution to the problem as the governing equations are non-linear. 

We notice that when 𝛾 = 0 (i.e. 𝑅 → ∞), the problem under 

consideration reduces to the flat plate case considered by Ishak et 

al. [24], while when 𝑓0 = 0, it reduces to the impermeable cylinder 

considered by Mahmood and Merkin [25]. Furthermore, when 

both 𝛾 and and 𝑓0 are zero, the present problem reduces to the 

problem considered by Ramachandran et al. [26] for the case of an 

arbitrary surface temperature with 𝑛 = 1 in their paper. The 

physical quantities of interest are the skin friction coefficient 𝐶𝑓 

and the local Nusselt number 𝑁𝑢𝑥, which are defined by 
 

 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑈2
 ,    𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, 

 

where 𝜏 is the skin friction and 𝑞𝑤 is the heat transfer from plate 

and given by 

 
 

𝜏𝑤 = 𝜇(
𝜕𝑢

𝜕𝑟
)𝑟=𝑅    ,    𝑞𝑤 = −𝑘(

𝜕𝑇

𝜕𝑟
)𝑟=𝑅 

 

where 𝜇 is the dynamic viscosity and k is the thermal 

conductivity. Using the similarity variables (5), we get 
 

 
1

2
𝐶𝑓𝑅𝑒𝑥

1
2 = 𝑓′′(0)  ,   

𝑁𝑢𝑥

𝑅𝑢𝑥

1
2

= −𝜃′(0), 

where 𝑅𝑒𝑥 = 𝑈𝑥/𝜈 is the local Reynolds number. 

 

3. Bessel Functions of the First Kind 

The Bessel’s equation of order 𝑛, is [27, 28]: 

 

             𝑥2𝑦′′(𝑥) + 𝑥𝑦′(𝑥) + (𝑥2 − 𝑛2)𝑦(𝑥) = 0,   
             for  𝑥 ∈ (−∞, ∞),   (𝑛 ∈ ℝ). 

(9) 

An obtained solution of this equation is [28]: 
 

 

∑

∞

𝑟=0

𝑎0

(−1)𝑟Γ(𝑛 + 1)

22𝑟𝑟! Γ(𝑛 + 𝑟 + 1)
(
𝑥

2
)2𝑟+𝑛 , 

 

for any value of 𝑎0; where Γ(𝜆) is the gamma function defined 

as follows: 
 

 

Γ(𝜆) = ∫
∞

0

𝑒−𝑡𝑡𝜆−1𝑑𝑡. 

 

Let us choose 𝑎0 =
1

2𝑛Γ(𝑛+1)
. Accordingly, we obtain the solution 

which we shall denote by 𝐽𝑛(𝑥) and we call it the Bessel function 

of the first kind of order 𝑛: 
 

           𝐽𝑛(𝑥) = ∑∞
𝑟=0

(−1)𝑟

𝑟!Γ(𝑛+𝑟+1)
(

𝑥

2
)2𝑟+𝑛 , (10) 

 

where series (10) is convergent for all −∞ < 𝑥 < ∞. Now, we 

express some properties of the first kind of Bessel functions. Some 

recursive relations of derivation are as follow [28]: 
 

          
𝑑

𝑑𝑥
(𝑥𝑛𝐽𝑛(𝑥)) = 𝑥𝑛𝐽𝑛−1(𝑥), (11) 
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            𝐽′𝑛(𝑥) = 𝐽𝑛−1(𝑥) −
𝑛

𝑥
𝐽𝑛(𝑥). (12) 

An important property of the first kind of Bessel functions is 

converging to zero for  𝐽𝑛
(𝑚)

(𝑥) when 𝑥 → ∞ for 𝑛, 𝑚 = 0,1,2,3. .. 

 

4. Function Approximation 

Suppose that ℋ = 𝐿2(Γ), where Γ = (0, +∞), let 

{𝐽0(𝑥), 𝐽1(𝑥), . . . , 𝐽𝑛(𝑥)} ⊂ ℋ be the set of Bessel functions and 

suppose that 
 

            𝐉 = span{𝐽0(𝑥), 𝐽1(𝑥), . . . , 𝐽𝑛(𝑥)}, (13) 

Since ℋ is Hilbert space and 𝐉 is the finite-dimensional subspace, 

dim 𝐉 = 𝑛 + 1, so 𝐉 is a closed subspace of ℋ, therefore, 𝐉 is a complete 

subspace of ℋ. Let f be an arbitrary element in ℋ, therefore, 𝑓 has a 

unique best approximation from 𝐉, say �̂� ∈ 𝐉, that is 

 

             ∃ �̂�  ∈  𝐉; ∀ 𝑗 ∈  𝐉, ∥ 𝑓 − �̂� ∥≤∥ 𝑓 − 𝑗 ∥ , 

                             where ∥ 𝑓 ∥=< 𝑓, 𝑓 >1/2 and < 𝑓, 𝑔 >= ∫
∞

−∞
𝑓(𝑡)𝑔(𝑡) 𝑑𝑡. 

(14) 

Definition: (Direct sum (⊕)): A vector space ℋ is said to be the 

direct sum of two subspaces 𝑌 and 𝑍 of ℋ, written ℋ = 𝑌 ⊕ 𝑍, if 

each 𝑥 ∈ ℋ has a unique representation 𝑥 = 𝑦 + 𝑧. Then, 𝑍 is called 

an algebraic complement of 𝑌 in ℋ and vice versa, and 𝑌, 𝑍 is 

called a complementary pair of subspaces in ℋ. 

Definition: Let ℋ be an Hilbert space and 𝑌 be any closed 

subspace of ℋ. 𝑌⊥ is defined the orthogonal complement, as: 
 

           𝑌⊥ = {𝑧 ∈ ℋ| 𝑧 ⊥ 𝑌} . (15) 

Lemma: Let 𝑌 be any closed subspace of a Hilbert space ℋ. Then, 
 

           ℋ = 𝑌 ⊕ 𝑌⊥ . (16) 

Proof. See [29]. 

Now, by using (13) and (14), we can say ℋ = 𝐉 ⊕ 𝑍, 

where 𝑍 = 𝐉⊥, so that for each 𝑥 ∈ ℋ, 𝑥 = 𝑗 + 𝑧. Where 

𝑧 = 𝑥 − 𝑗 ⊥ 𝑗, hence, < 𝑥 − 𝑗, 𝑗 >= 0. We have 𝑗 ∈ 𝐉, therefore, 
 

           𝑗 = ∑𝑛
𝑘=0 𝑎𝑘 𝐽𝑘(𝑥) , (17) 

and 𝑥 − 𝑗 ⊥ 𝑗 gives the 𝑛 conditions 
 

           < 𝐽𝑚(𝑥), 𝑥 − 𝑗 >=< 𝐽𝑚(𝑥), 𝑥 − ∑𝑛
𝑘=0 𝑎𝑘 𝐽𝑘(𝑥) >= 0, (18) 

that is 

           < 𝐽𝑚(𝑥), 𝑥 >= ∑𝑛
𝑘=0 �̅�𝑘  < 𝐽𝑚(𝑥), 𝐽𝑘(𝑥) >, 

             𝑚 = 0,1, . . . , 𝑛 . 
(19) 

This is a nonhomogeneous system of 𝑛 + 1 linear equations in 

𝑛 + 1 unknown coefficients {�̅�𝑘}𝑘=0
𝑛  (spectral coefficients). The 

determinant of the coefficients is 
 

𝐺(𝐽0(𝑥), 𝐽1(𝑥), . . . , 𝐽𝑛(𝑥))

= |
|

< 𝐽0(𝑥), 𝐽0(𝑥) > < 𝐽0(𝑥), 𝐽1(𝑥) > … < 𝐽0(𝑥), 𝐽𝑛(𝑥) >
< 𝐽1(𝑥), 𝐽0(𝑥) > < 𝐽1(𝑥), 𝐽1(𝑥) > … < 𝐽1(𝑥), 𝐽𝑛(𝑥) >
⋮ ⋮ ⋱ ⋮
< 𝐽𝑛(𝑥), 𝐽0(𝑥) > < 𝐽𝑛(𝑥), 𝐽1(𝑥) > … < 𝐽𝑛(𝑥), 𝐽𝑛(𝑥) >

|
| . 

 

Since 𝐉 exists and is unique, that system has a unique solution. 

Hence, 𝐺(𝐽0(𝑥), 𝐽1(𝑥), . . . , 𝐽𝑛(𝑥)) must be different from 0. The 

determinant 𝐺(𝐽0(𝑥), 𝐽1(𝑥), . . . , 𝐽𝑛(𝑥)) is called the Gram 

determinant of 𝐽0(𝑥), 𝐽1(𝑥), . . . , 𝐽𝑛(𝑥). 

Theorem: Suppose that ℋ is a Hilbert space and 𝑌 a closed 

subspace of ℋ such that dim 𝑌 < ∞ and {𝑦1, 𝑦2, . . . , 𝑦𝑛} is any basis 

for 𝑌. Let 𝑥 be an arbitrary element in ℋ and  𝑦0 be the unique best 

approximation to 𝑥 from 𝑌. Then, 
 

           ∥ 𝑥 − 𝑦0 ∥2=
𝐺(𝑥,𝑦1,𝑦2,...,𝑦𝑛)

𝐺(𝑦1,𝑦2,...,𝑦𝑛)
 , (20) 

Proof. See [29]. 

  To obtain the Spectral coefficients {𝑎𝑖}𝑖=0
𝑁  in series (17) and an 

approach of 𝑢(𝑥) via (17), we employ the collocation algorithm 

introduced as follows: 

 

5. Collocation Algorithm for Solving Problem 

A method for solving differential equations is the collocation 

method, that, by substituting the finite series (17) to equations and 

constructing the residual function(s) and forcing it to zero on 

collocation point obtains a solution(s) [16, 30, 31, 18]. In all of the 

spectral methods, the purpose is to finding these coefficients 𝑎𝑖  of 

expand. 

In the following algorithm, we solve the equations (6) with their 

conditions (7): 

At the beginning we must satisfy the conditions in the expanding 

solutions of 𝑓(𝜂) and 𝜃(𝜂), therefore, according to the properties 

of the first kind of the Bessel functions: 
 

           𝐽𝑛(0) = {
1, 𝑛 = 0
0, 𝑛 ≥ 1

 (21) 

and lim𝜂→∞𝐽𝑛(𝜂) = 0 for all 𝑛 and also (12) we can satisfy the two 

conditions of 𝑓(𝜂) at zero through starting 𝑖 from 2, and to satisfy 

𝑓′(∞) = 1 we can multiply series to 
𝑎𝑖𝜂2

𝜂𝜂+1
 and add with 𝑓0 +

𝜂2

𝜂+𝑙
. 

Now, for conditions of 𝜃(𝜂), the Bessel functions satisfy them, but 

the speed of convergent in the infinite to zero is low, therefore, we 

multiply the series to 𝑒𝑥𝑝(−𝑥) and for 𝜃(0) = 1 add it with exp(−𝜂) 

we start 𝑖 from 1, multiply series to exp(−𝛼𝜂) and add with 

𝑒𝑥𝑝(−𝜂). In the following algorithm, we solve the equations (6): 
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BEGIN   

1.  Construct the following series by using the (17), 
 

           𝑓�̂�(𝜂) = 𝑓0 +
𝜂2

𝜂+𝑙
+

𝑎𝑖𝜂2

𝜂𝜂+1
∑𝑁

𝑖=2 𝑎𝑖𝐽𝑖(𝜂) (22) 

           𝜃�̂�(𝜂) = 𝑒𝑥𝑝(−𝜂)(1 + ∑𝑁
𝑗=1 𝑏𝑗𝐽𝑗(𝜂)) (23) 

2.  Insert the series of previous step to equations (6) and 

construct the residual functions as follow: 
 

 

ℛ1(𝜂) = (1 + 2𝛾𝜂)𝑓�̂�(𝜂)′′′ + 2𝛾𝑓�̂�(𝜂)′′ + 𝑓�̂�(𝜂)𝑓�̂�(𝜂)′′ + 

1 − (𝑓�̂�(𝜂)′)2 + 𝜆𝜃�̂�(𝜂), 

 

ℛ1(𝜂) = (1 + 2𝛾𝜂)𝑓�̂�(𝜂)′′′ + 2𝛾𝑓�̂�(𝜂)′′ + 𝑓�̂�(𝜂)𝑓�̂�(𝜂)′′ + 

1 − (𝑓�̂�(𝜂)′)2 + 𝜆𝜃�̂�(𝜂), 

Now, we have 2𝑁 − 1 unknowns {𝑎𝑛}𝑛=2
𝑁  and {𝑏𝑛}𝑛=1

𝑁 . To obtain 

these unknown coefficients, we need 2𝑁 − 1 equations, thus: 

3.  By choosing 𝑁 − 1 points {𝑥𝑖}, 𝑖 = 1, . . . , 𝑁 − 1, and 𝑁 points 

{𝑦𝑖}, 𝑖 = 1, . . . , 𝑁 in the domain of the equations (6) as collocation 

points and substituting them in ℛ1(𝜂) and ℛ2(𝜂), respectively, we 

construct a system containing 2𝑁 − 1 equations and 2𝑁 − 1 

unknowns. 

4.  By solving the obtained system of equations in step 4, we 

gain the 𝑎𝑛 , 𝑛 = 0,1, . . . , 𝑁. 

5.  By substituting the obtained values of {𝑎𝑖}𝑖=2
𝑁  and {𝑏𝑗}𝑗=1

𝑁  in 

series of step 2, we approach 𝑓(𝜂) by 𝑓�̂�(𝜂) and 𝜃(𝜂) by 𝜃�̂�(𝜂). 

END. 

 

6. Results 

  In this section, we show the graphical results of the influence of 

physical parameters on the velocity 𝑓′(𝜂), the temperature profile 𝜃(𝜂), 

the skin friction coefficient 
1

2
𝐶𝑓𝑅𝑒𝑥

1/2 and the local Nusselt number 

𝑁𝑢 − 𝑥/𝑅𝑢𝑥
1/2. Specifically the attention has been focused to the 

variations of curvature parameter 𝛾, buoyancy or mixed convection 

parameter 𝜆, Prandtl number 𝑃𝑟 and 𝑓0. For this purpose, the figures 2-

5 have been presented. Also the variation of the skin friction coefficient 
1

2
𝐶𝑓𝑅𝑒𝑥

1/2 and the local Nusselt number 𝑁𝑢 − 𝑥/𝑅𝑢𝑥
1/2 are computed 

in tables 1 and 2 for sundry parameters Prandtl number 𝑃𝑟. In these 

tables, the comparison of the present results has been made with the 

existing numerical results. An agreement between the results is noted in 

the limiting sense. Figure 3 shows the influence of 𝑓0 on velocity and 

temperature profiles for two cases of buoyancy or mixed convection 

parameter 𝜆. It is noted that for aiding flow (heated cylinder) and to the 

opposing flow (cooled cylinder), the velocity 𝑓′(𝜂) increases as 𝑓0 

increases but for the temperature profile 𝜃(𝜂) it shows the opposite 

results. Figure 6 indicates the effects of curvature parameter 𝛾 on 

velocity and temperature profiles for two cases of buoyancy or mixed 

convection parameter 𝜆. It is observed that the velocity 𝑓′(𝜂) decreases 

and the temperature profile 𝜃(𝜂) increases when curvature parameter γ 

increases in both cases of aiding and opposing flows. 

Figure 2 shows the effects of buoyancy or mixed convection 

parameter 𝜆 on velocity and temperature profiles. It is noted that the 

velocity of fluid increases as 𝜆 increases but for the temperature profile 

it shows the opposite results. Figure 4 shows the effects of Prandtl 

number 𝑃𝑟 on velocity and temperature profiles. As expected, velocity 

𝑓′(𝜂) increases and the temperature 𝜃(𝜂) decreases by increasing 

Prandtl number. The values of the skin friction coefficient 
1

2
𝐶𝑓𝑅𝑒𝑥

1/2 

and the local Nusselt number 𝑁𝑢 − 𝑥/𝑅𝑢𝑥
1/2 are given in tables 1 and 

2, respectively. Table 1 is made to show the present results in case of 

aiding flow and compared them with the numerical results reported by 

Ishak et al. [10], Ramachandran et al. [20], Lok et al. [8] and 

Hassanien et al. [9]. It is seen from table 2 that the present values of 
1

2
𝐶𝑓𝑅𝑒𝑥

1/2 calculated by HAM are in very good agreement with those 

of numerical results of Ishak et al. [10], Ramachandran et al. [26], Lok 

et al. [8] and Hassanien et al. [9] Table 2 shows the value of local 

Nusselt number 𝑁𝑢 − 𝑥/𝑅𝑢𝑥
1/2. It is observed that the skin friction 

coefficient decrease and the local Nusselt number increases by 

increasing 𝑃𝑟 in assisting flow. During the study of the reliability and 

effectiveness of the applied method are demonstrated. 

An important parameter in fluid flow over a surface is thickness 

of boundary layer. The boundary layer thickness 𝛿 has been defined 

as the locus of points where the velocity 𝑢 parallel to the plate 

reaches %99 of the external velocity 𝑈∞. In other hand, based on 𝑢 =

𝑈𝑓′(𝜂) the  𝑓 ′̂(𝜂) = 0.99. Finally based on (5) the thickness of 

boundary layer over vertical slender cylinder defined as follows: 
 

 

           𝛿 ≈ √2𝑅𝜂0.99√
𝜈𝑥

𝑈
+ 𝑅2   =     √2𝑥𝑅𝜂0.99𝑅𝑒𝑥

−1/2
 + 𝑅2 (24) 

where 103 < 𝑅𝑒𝑥 = 𝑈𝑥/𝜈 < 106 is called the local Reynolds 

number of the flow along the plate surface [23]. In Equation (24) as 

shown in Figure 1, R must be subtracted from the obtained value. The 

equation (24) shows that the boundary-layer thickness is proportional 

to √𝜈 and to √𝑥. It is clear that 𝛿 increases proportionately to √𝑥. On 

the other hand the relative boundary layer thickness 𝛿 decreases with 

increasing Reynolds number, so that in the limiting case of frictionless 

flow, with 𝑅𝑒 → ∞, the boundary layer thickness vanishes. As a result 

of this discuss, for example in, 𝑓0 = 0 and 𝑃𝑟 = 1, 𝑃𝑟 = 1, 𝜆 = 1, the 

𝜂0.99 = 2.91, and the the thickness for 𝑅 = 1, 𝑅𝑒𝑥 = 103 can be 

calculatetd by:  √(0.06𝑥 +  1) −  1. 

To show the convergency BFC method (Bessel functions 

collocation) for solving the equations (6), we have presented the 

∥ 𝑅𝑒𝑠(𝑥) ∥2 defined as follows: 
 

           ||𝑅𝑒𝑠(𝑥)||2 = ∫
𝐿

0
|𝑅𝑒𝑠(𝑥)|2𝑑𝑥. (25) 

Figure 6-8 show the graphs of the convergency rate for solving 

the equations (6) for different parameters and several 𝑁. These 

figures show that by increasing the 𝑁, the residual tends to zero. 
 

Table 1.  Variation of the skin friction coefficient  𝑓(𝜂)′′(0) with 𝑓0 = 0, 𝜆 = 1 and  𝛾 = 0 

𝑃𝑟 presented method HAM [32] shooting Ishak et al.[10] 

0.7 1.706339 1.70634 1.70632 1.7063 

1.0 1.675462 1.67540 1.67541 1.6754 

7.0 1.517902 1.51790 1.51790 1.5179 

10 1.492826 1.49244 1.49282 1.4928 

20 1.448594 1.44859 1.44853 1.4485 
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Table 2.  Variation of the skin friction coefficient  𝜃′(0) with 𝑓0 = 0, 𝜆 = 1 and  𝛾 = 0 

𝑃𝑟 presented method HAM [32] shooting Ishak et al.[10] 

0.7 0.764069 0.76400 0.76407 0.7641 

1.0 0.870788 0.87051 0.87080 0.8708 

7.0 1.722384 1.72124 1.72238 1.7224 

10 1.944631 1.94475 1.94462 1.9446 

20 2.457606 2.45629 2.45760 2.4576 

 

 

 
 
 

Figure 2. Graph of the approximation function of 𝑓′(𝜂) and 𝜃(𝜂) by 𝑁 = 30 for 

several 𝜆 and 𝑓0 = 0.5, 𝛾 = 1, 𝑃𝑟 = 1 

 

 

 

Figure 3. Graph of the approximation function of 𝑓′(𝜂) and 𝜃(𝜂) by 𝑁 = 30 for 

several 𝑓0 and 𝛾 = 1, 𝑃𝑟 = 1. (a) 𝜆 = 1 and (b) 𝜆 = −2 

 

 
 

Figure 4. Graph of the approximation function of 𝑓′(𝜂) and 𝜃(𝜂) by 𝑁 = 30 for 

several 𝑃𝑟 and 𝛾 = 1, 𝜆 = −2, 𝑓0 = 0.5. (a) 𝑃𝑟 > 1 and (b) 𝑃𝑟 < 1 

 
 

 

 
 

Figure 5. Graph of the approximation function of 𝑓′(𝜂) and 𝜃(𝜂) by 𝑁 = 30 for 

several 𝛾 and 𝑓0 = 0.5, 𝑃𝑟 = 1. (a) 𝜆 = 2 and (b) 𝜆 = −2 
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∥ 𝑅𝑒𝑠1(𝑥) ∥2 

 
∥ 𝑅𝑒𝑠2(𝑥) ∥2 

Figure 6. Logarithmic graph of the ∥ 𝑅𝑒𝑠𝑖(𝑥) ∥2 for 𝑖 = 1,2 , several 𝑁, several 𝜆 

and 𝑓0 = 0.5, 𝑃𝑟 = 1 

 

 
 

 [∥ 𝑅𝑒𝑠1(𝑥) ∥2] 

 
 

 [∥ 𝑅𝑒𝑠2(𝑥) ∥2] 
 

Figure 7. Logarithmic graph of the ∥ 𝑅𝑒𝑠𝑖(𝑥) ∥2 for 𝑖 = 1,2 , several 𝑁, several 

𝑓0 and 𝜆 = 1, 𝑃𝑟 = 1, 𝛾 = 1 

 
 [∥ 𝑅𝑒𝑠1(𝑥) ∥2] 

 

 
 [∥ 𝑅𝑒𝑠2(𝑥) ∥2] 

 
Figure 8. Logarithmic graph of the ∥ 𝑅𝑒𝑠𝑖(𝑥) ∥2 for 𝑖 = 1,2, several 𝑁, several 

𝑓0 and 𝜆 = −2, 𝑃𝑟 = 1, 𝛾 = 1 

 
 

7. Conclusions 

The mixed convection boundary layer flow about a vertical slender 

cylinder in an incompressible viscous fluid is studied. A Spectral 

solution for the governing equations was obtained that allows the 

computation of the velocity profile 𝑓′(𝜂), the temperature profile 𝜃(𝜂), 

the skin friction coefficient 
1

2
𝐶𝑓𝑅𝑒𝑥

1/2 and the local Nusselt number 

𝑁𝑢 − 𝑥/𝑅𝑢𝑥
1/2 for various values of the physical parameters curvature 

parameter γ, buoyancy or mixed convection parameter 𝜆, Prandtl 

number 𝑃𝑟 and 𝑓0. The following observations have been made:   

 

1.  The increase in the Prandtl number 𝑃𝑟 decreases the skin 

friction coefficient 
1

2
𝐶𝑓𝑅𝑒𝑥

1/2 and increases the local Nusselt 

number 𝑁𝑢 − 𝑥/𝑅𝑢𝑥
1/2. Also, velocity 𝑓′(𝜂) increases and the 

temperature 𝜃(𝜂) decreases by increasing Prandtl number.  

2.  The velocity 𝑓′(𝜂) increases and the temperature 𝜃(𝜂) decreases 

by increasing buoyancy or mixed convection parameter 𝜆.  

3.  The velocity 𝑓′(𝜂) decreases and the temperature 𝜃(𝜂) 

increases by increasing curvature parameter 𝛾.  

4.  The velocity 𝑓′(𝜂) increases and the temperature 𝜃(𝜂) 

decreases by increasing 𝑓0.  

 

Besides, in this work, we introduce a new Spectral-collocation 

method based on Bessel functions of the first kind to solve equations 

and system of equations with conditions in the infinite. We solved 

Eqs. (6) and obtained their solutions with well accuracy and 

convergence rate, as the obtained results show the applicability and 

usefulness this method for solving the like these equations.   
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