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Abstract 

Natural calamities (e.g., hurricane, excessive ice-fall) may often impede the inventory replenishment during the 
peak sale season. Due to the extreme situations, sales may not occur and demand may not be recorded. This study 
focuses on forecasting of intermittent seasonal demand by taking random demand with a proportion of zero values 
in the peak sale season. Demand pattern for a regular time is identified using the seasonal ARIMA (S-ARIMA) 
model. The study proposes a Bayesian procedure to the ARIMA (BS-ARIMA) model to forecast the peak season 
demand which uses a dummy variable to account for the past years intermittent demand. To capture uncertainty in 
the B-ARIMA model, the non-informative prior distributions are assumed for each parameter. Bayesian updating is 
performed by Markov Chain Monte Carlo simulation through the Gibbs sampler algorithm. A dynamic 
programming algorithm under periodic review inventory policy is applied to derive the inventory costs. The model 
is tested using partial demand of seasonal apparel product in the US during 1996-05, collected from the US Census 
Bureau. Results showed that, for intermittent seasonal demand forecast, the BS-ARIMA model performs better and 
minimizes inventory costs than do S-ARIMA and modified Holt-Winters exponential smoothing method. 

1. Introduction 
The random occurrences of seasonal demand are studied to manage the inventory at minimum costs. The inventory 
replenishment and sales can be interrupted due to natural calamities. Demand of such products is often intermittent 
which may contain a proportion of zero values. Traditional forecasting methods can be inappropriate for 
forecasting such seasonal demand that increases during specific time period in a year. These forecast obtained by 
the autoregressive integrated moving average (ARIMA) models are found to be better compared to other ways of 
modeling. The focus of this paper is to demonstrate the inventory cost reductions through the application of an 
appropriate demand forecast of a seasonal product. A time series from January 1996 to June 2005 of a seasonal 
apparel demand in the U.S., collected from the U.S. Census Bureau, is selected. To exhibit the intermittent features 
in the selected time series, six arbitrarily chosen values during a peak season from July-December 2004 are 
considered unavailable. A seasonal ARIMA (S-ARIMA) model has been constructed to forecast the peak season 
demand from July-December 2005.  

Time series forecasting models are increasingly applied to forecast seasonal demand and short-life products 
Makridakis at. el. (1998). Gardner and Diaz-Saiz (2002) analyzed forecasting implementation problems in 
inventory control systems (safety stock investment) for seasonal time series. Under an autoregressive moving 
average (ARMA) assumption, Kurawarwala and Matsuo (1998) estimated the seasonal variation of PC products 
demand using demand history of pre-season products. Miller and Williams (2004) incorporated seasonal factors in 
their model to improve forecasting accuracy while seasonal factors are estimated from multiplicative model. 
Hyndman (2004) extended Miller and Williams’ (2004) work by applying various relationships between trend and 
seasonality under seasonal ARIMA procedure. The classical ARIMA approach becomes prohibitive, and in many 
cases it is impossible to determine a model, when seasonal adjustment order is high or seasonal adjustment 
diagnostics fails to indicate that time series is sufficiently stationary after seasonal adjustment. In such situations, 
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the static parameters of the classical ARIMA model are considered the main restriction to forecasting high variable 
seasonal demand. Another restriction of the classical ARIMA approach is that it requires a large number of 
observations to determine the best fit model for a data series. In the ARIMA model, if the Bayesian approaches are 
used, the restriction of the static values of the parameters is relieved by imposing the probability distributions to 
represent the parameters. Although the practices of Bayesian ARIMA models for seasonal forecast are more 
realistic, but the literature on Bayesian methods applied to seasonal ARIMA time series is limited. In this study, 
after the classical ARIMA model is developed for the selected dataset, and the Bayesian method is applied to the 
S-ARIMA model. A Bayesian approach to the S-ARIMA model is studied with the special relevant to the problem 
that forecast should be performed from an incomplete time series. An adaptive approaches of Holt-Winters’ (H-W) 
exponential smoothing technique is also studied to forecast the time series.  
 
A periodic review inventory model has been studied depending on the forecast obtained by the above models. The 
optimal inventory costs have been derived for each forecast via dynamic programming. The best forecast is 
considered as the one which provides the minimum inventory costs.  
 
2.  S-ARIMA Model Identification 
In this paper, the S-ARIMA process begins by transforming the original time series into a stationary series by 
taking the mean difference of data. The stationarity of the time series has been achieved after the first and seasonal 
(d1,12) difference of order 2. The autocorrelation function (ACF) and partial ACF (PACF) have been identified as 
decreasing, sinusoidal and alternate in sign and showed that the order of p and q for both AR(p) and MA(q) 
components for seasonal and non-seasonal series can at the most be one. Using goodness-of-fit statistics, e.g., (i) 
Akaike information criterion (AIC), (ii) Schwarz Bayesian information criterion (BIC) and the chi-square ( 2χ ) 
test, the best  structure of S-ARIMA (p, d, q)×(P, D, Q)12 has been identified as S-ARIMA (0,1,1)(1,1,0)12. The 
estimated parameters of the S-ARIMA are reported in Table 1.  
 

Table 1: Estimated values of the S-ARIMA parameters 
 

Parameter Estimate Standard  
error t-value Pr>|t| lag 

MU 1226.80 7889.10 0.16 0.8700 0

MA1,1 0.74 0.07 10.59 0.0001 1

AR1,1 -0.35 0.09 -3.59 0.0003 12
 

Both the moving average "MA1,1" and the autoregressive AR1,1 parameters are 0.735 and -0.35, respectively 
with significant t values. The parameters are estimated using the maximum likelihood method by SAS software. 

 
3. Point Forecast with S-ARIMA Model  
The S-ARIMA model (0,1,1) (1,1,0)12 has been identified best model for the time series and entailed to forecast the 
peak demand. In the S-ARIMA model, the autoregressive term p = 0, P = 1 (seasonal) [that is, )1)(01( 12

1Bφ−− ]; 

differencing term d = 1, D = 1 (seasonal difference) [that is, )1)(1( 12BB −− ] and moving average term is q = 1, Q 
= 0 (seasonal) [ )01)(1( −− Bθ ] . The model has (1, 12) period differencing, the autoregressive factors is 

)1( 12Bφ− = (1 + 0.35096 B12), the moving average factors is )1( Bθ− = (1 - 0.73527 B), and the estimated mean, 
C = 1226.8. Transforming autoregressive terms and coefficient, the model is given by 

)1(  )1(  )1(
)1( 

1212 BBB
eBC

y t
t −−−

−+
=

φ
θ

.            (1) 

After expanding, and transforming the back operator, Equation (1) can be simplified in the following form, 
Ceeyyyyyy tttttttt +−++−+−++= −−−−−− 1252413121  )1()1( θφφφφ .      (2) 

In order to forecast one period ahead, that is, 1+ty , the subscript of is increased by one unit, throughout, and using  

Using φ  = -0.35 and θ = 0.735, the Equation (2) is given by  
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8.1226735.0 35.035.065.065.0 1242312111 +−+−+−+= +−−−−+ tttttttt eeyyyyyy    (3) 
In order to forecast for the period 115 (i.e., July 2005), Equation (3) is given by 

8.1226ˆ735.0ˆ 35.035.065.065.0 1141159091102103114115 +−+−+−+= eeyyyyyy  
The forecast results for stage-2 at 2005 using S-ARIMA is shown in Table 4.  
 
4.  Bayesian Sampling-based ARIMA Model (BS-ARIMA) 
Bayesian methods have been widely applied in time series context. The Markov Chain Monte Carlo (MCMC) 
method is efficient and flexible algorithms for conducting posterior inference of Bayesian model through 
simulation. Depending on the time series data, a Markov chain can be constructed in various ways and the Gibbs 
sampler, a commonly used algorithm applied here to derive the posterior parameters of the forecasting model. The 
key advantage of developing S-ARIMA model from Bayesian perspectives is the capacity to forecast demand from 
an incomplete time series which contains both zero and non-zero data. In this model, the form of S-ARIMA 
(0,1,1)(0,1,1)12 model in Equation (3) has been applied. The model can be expressed in the following, 

   Ceeyyyyyy tttttttt +−++−++= −−−−−− 12542431321211  θφφφφ      
where )1(1 φφ += , )1(2 φφ +−= , and φφφ == 43 . It is noted that the demand for the stage-2 period from July-
December 2004 are not available. A dummy variable wt is added to Equation (7) to account the missing values of 
the data series. The form of the BS-ARIMA after adding dummy variable is given by  

ttttttttt wCeeyyyyyy ++−++−++= −−−−−− 12542431321211  θφφφφ  .     (4) 
The dummy variable wt, 10 ≤≤ tw  is added to represent the status of past information, e.g., if the dummy variable 
is set to ‘zero’ when demand information of a period is known. A scaled value of wt may be set (from 0 to 1) to 
reflect the partial demand of a period. The value of wt as 1.0 when demand information for a period is missing, 
while the value 0.50 indicates incomplete demand information, i.e., approximately 50% demand was observed. For 
dummy variable wt, the values placed at July to December 2004 are shown in Table 2. 

 
Table 2: Values of dummy variables for July to December, 2004 (units in million) 

 
Demand Jul Aug Sep Oct Nov Dec 

Projected, yp 2.54 3.81 4.14 4.05 2.41 1.75 
Stage-1, yst-1 1.55 1.55 1.55 1.55 1.55 1.55 

Dummy variable, wt 0.39 0.59 0.63 0.62 0.36 0.11 
 
For the data series yt, (t = 1, 2, …, n, n+1, …N), the yt corresponds to the demand of a period t, where a vector time 
series from n+1 to N,  { }1)( ≥−= nNyF  is the prediction periods. A Bayesian computation is carried out to 
predict the demand for (N-n) period through the use of sampling-based algorithm. The particular sampling-based 
approach used in this model is a Markov chain Monte Carlo method based on the Gibbs sampler algorithm. The 
likelihood function for n observation yt, (y1, y2, …, yn) is denoted by );( ψyf , where ),,,( τβθφψ i=  with 

) , . . . ,( 41 φφφ =i . The conditional likelihood obtained from the factorization theorem (Zellner, 1996) is given by 
),, . . . ,|(.  .  . ),|()|()|( 11121 ΨyyyfΨyyfΨyfΨyf nnt −= . 

Given the prior distribution for Ψ, )|( tyΨf ,  the posterior density for Ψ is given by )( ).|()|( ΨfΨyfyΨf tt ∝ . 
If ) , . . . ,( 1 NnF yyy += , for predicting (N - n) = L period, the predictive density is given by 

 dΨΨfΨyyyyf tFtF )().,|()|( ∫= ,            (5) 

where ),|(∫ Ψyy tF  is the density of the future data Fy . The L steps ahead forecast is then  

dΨΨyyyyΨyyyΨyyΨyyf tLnnLntnntntF ),,,|( . . . ),,|( ),|(),|( 11121 ∫∫∫ −++++++= . 

To obtain a sample of predictions from the density function in Equation (9), for each Ψt, one needs to draw from 
),|(∫ Ψyy tF . Following are the steps to predict the future values of the BS-ARIMA model,  

Step 1: Data Definitions 
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ty , {for t in (1: n) } 

tw , {Dummy (t), for t in 1: N} 
Step 2: Model Description 

),(~ τµ tt Normaly {for t in (2: n)}, where  

tttttttt weeyyyyC βθφφφφµ +++++++= −−−− 1254243132121 , and 21 στ =   
Step 3: Assigning Priors 

 µ ~ Normal (0, 0.001), iφ  ~ Normal(0, 0.001 ), iθ ~ Normal(0, 0.001 ),  
β ~ Normal(0, 0.001 ), τ ~ Chi-sq (1) 

Step 4: Forecasts Period {t = n +1 … N} 
],[~ )()( τµ tnewtnew Normaly  

ttttttttnew weeyyyyC βθφφφφµ +++++++= −−−− 1254243132121)(  {for t in (n +1: N)} 

Carlin and Gelfand (1990) illustrated that the point estimates arising from ),|(∫ Ψyy tF perform well if the 

variance of the predictive distribution remain small. In ‘Step 3’, the following non-informative prior distribution 
has been used for each parameter. The prior distributions Normal(0, 0.001) are assumed for coefficient φ  and θ. 
Parameter β is expected to follow a relatively informative prior distribution as Normal(1.0, 0.1). The precision (a 
reciprocal of variance), τ follows a chi squared distribution with one degree of freedom. The choice of prior 
distribution is followed by (Gelman et. al., 2004; Congdon, 2003). In the model, the estimated parameters of 
Bayesian ARIMA model are shown in Table 3. 
 

Table 3: Estimated parameters of Bayesian ARIMA model (units in million) 
 

node mean St.dev 2.50% median 97.50% node mean St.dev 2.50% median 97.50%

alpha1 0.15 0.16 -0.17 0.15 0.48 alpha4 0.03 0.22 -0.39 0.03 0.44
alpha2 0.23 0.15 -0.073 0.23 0.53 theta1 -0.01 0.67 -1.45 -0.008 1.38
alpha3 0.68 0.19 0.29 0.68 1.05 beta 1.00 3.22 -5.49 1.05 7.30

 
Actual demand, the simulated results of the BS-ARIMA and S-ARIMA results for stage-2 period of 2005 are shown 
in Table 4. The posterior models are derived using MCMC approach through Bayesian inference using Gibbs 
Sampling (BUGS) package 
 

Table 4: Demand Forecast by BS-ARIMA model (units in million) 
 

Month 
BS-ARIMA model S-ARIMA model 

Actual 
demand Estimate Std 

error 2.5% Med 97.5% Estimate Std 
error 2.5% 97.5%

Jul 2.83 2.47 0.71 1.07 2.46 3.88 2.74 0.38 0.38 3.50
Aug 3.33 3.62 0.73 2.19 3.61 5.07 3.65 0.40 0.40 4.34
Sep 4.10 4.77 0.74 3.32 4.76 6.22 4.92 0.41 0.41 5.96
Oct 5.31 5.29 0.73 3.89 5.28 6.76 5.03 0.42 0.42 6.91
Nov 3.46 4.28 0.77 2.75 4.28 5.76 2.69 0.44 0.44 4.31
Dec 2.28 2.97 0.77 1.53 2.96 4.50 2.70 0.45 0.45 3.58

 
Adaptive exponential smoothing forecasting (Holt-Winter) technique is widely spread in practice, has been used to 
compare the proposed model. Multiplicative exponential smoothing (M-ES) model, defined as 

( ) LTtttTt SGTRd −+−−+ +=   11 has been applied to compare the forecast for next T periods, where  is the estimate 
of level index,  is the estimate of trend, and   is the estimate of seasonal component (seasonal index). The 
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initial values of the parameters are determined using the data from July 2002 to December 2002 and the values are 
modified in subsequent years. The data series from January 2003 to June 2005 are used to adjust the weight of the 
smoothing parameters and demand forecast is performed for the stage-2 (July to December) in 2005. 
 
5. Inventory Cost Compare to Evaluate the Best Forecast  
In this section, the cost saving approach in the inventory of the seasonal product is presented.  A monthly review 
plan is considered for periodic inventory replenishment.  There are t (t = 1, 2, …, n) forecasting periods at stage-2 
and the demand forecast at any period t is yt, while the actual demand for any period is xt. Shortages may occur 
when tt yx > . The shortage cost is πt dollars per period. To place an order for procuring yt items, the fixed 
ordering cost is A dollars, unit purchasing cost is c dollars and unit holding cost is h dollars. Each unit brings a 
price of w dollars when it is sold, where w > c. Average fixed ordering cost per period is given by A/yt; while 
revenue earned per period is tycw )( − , the average inventory per period is 2)( tt xyh − . In a periodic (yt, L) 
replenishment policy, the aggregated total cost (TC) is given by  ( ) ttt yAxyhTC +−= )(2 . The inventory cost 
and variable cost per unit per period (holding cost, setup cost, shortage costs etc.) are listed in Table 5. Holding 
cost rate is 30% per year. Therefore, holding cost ht per month is, ht = ($25)(0.30/year)/(12 months/year) = 
$0.624/month. 
 

Table 5: Unit costs applied to the inventory model 
 

 Parameters Jul Aug Sep Oct Nov Dec 

Dt 
Actual Demand 
(in million, $) 2.87 4.33 5.30 5.46 3.41 2.49

At 
Fixed cost 

(in thousand, $) 15.0 14.0 16.0 16.0 17.0 19.0

ct variable cost ($) 25.0 25.0 24.0 25.0 26.0 30.0

πt shortage cost ($) 5.0 5.0 5.0 5.0 5.0 5.0

ht inventory cost ($)  0.624 0.624 0.624 0.624 0.624 0.624
 
The steps to compare the forecasting models using the inventory costs are described in the following, 

Step 1: Find customer service level by specifying the probability (P1) of no stock-out using periodic review 
policy. 

Step 2: Select the safety factor z to satisfy P(Z) = (1- P1). The value of unit normal variable, P(Z)  can be 
obtained from Z-table or from inverse function of normal distribution. 

Step 3: Determine the ordering quantity, Q, for each forecast using lead time L( Lŷ ) and the safety stock (SS) 
where SS = ZσL (σL is standard deviation of the forecast error) Therefore, the ordering quantity is  

LL ZyQ σ+= ˆ ,  
(Ordering quantity may be increased to the next higher integer).  

Step 4: Compute the optimal inventory cost of actual demand and demand forecasts using dynamic 
programming (DP) algorithm.  

Step 5: Calculate the relative cost of each demand forecast with respect to the cost derived from actual 
demand and choose the best forecasting model that gives the minimum costs. 

 
The inventory cost associated with actual demand is the least inventory cost, which is considered the base cost 
reference to the demand forecasts. The relative percent of inventory cost (RPIC) for each forecast is determined. 
These percentages for each forecast are compared and the minimum percentage value is considered the best 
forecast for the selected time series. The standard errors of forecast, MAPE (mean absolute percentage error), 
inventory costs and the percent above the least inventory cost for each demand forecast for the given data set are 
presented in Table 6.  

Table 6: Inventory cost for each forecasting model and actual demand 
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Forecast 
Models 

Std. Error 
(million) MAPE Inventory 

Cost (million) 
Relative 

Percentages 

S-ARIMA 
 

BS-ARIMA 

0.55 13.18% $666.75 27.05% 

0.31 7.43% $561.46 6.99% 
Exponential 

Smoothing (M-ES) 0.48 10.54% $695.26 32.49% 

 
 
6. Conclusion 
In this paper an ARIMA approach is used to forecast the demand of a seasonal product. Based on the demand 
pattern, the S-ARIMA (0,1,1) (1,1,0)12 model has been identified to be the best fit model for the time series. For a 
non stationary stochastic time series (such as winter apparel), the forecasting model often becomes complicated. In 
S-ARIMA model, forecast errors are incorporated to refine the predicted value, so the model gradually improves 
toward the end of the time series and provides satisfactory forecasting accuracy.  
 
There are major advantages of using Bayesian methodology to forecast non-stationary demands. As classical 
ARIMA requires significantly long data series, a Bayesian-sampling based ARIMA (BS-ARIMA) model has been 
proposed to forecast from incomplete data with missing values. In BS-ARIMA model, it is assumed that data points 
at stage-2 (July to December) in 2004 were unavailable. A number of non-informative priors were used for the 
model parameters (α, β, τ). The posterior values of the parameters were computed numerically using the Markov 
Chain Monte Carlo (MCMC) simulation and BUGS/WinBUGS software. A multiplicative approach of 
exponential smoothing (M-ES) technique is considered as the base reference to forecast seasonal demand 
 
A periodic review model has been used to evaluate the inventory costs for each forecast and acknowledged the 
cost savings due to improved forecast. The dynamic programming algorithm is used to derive the lowest inventory 
cost for each demand forecast and the actual data. Comparing the cost percentages of each demand forecast above 
the inventory cost of actual demand data, standard error, and mean absolute percent error, the analysis suggests 
that the BS-ARIMA model is well-performed forecasting model for time series and advantageous over many of the 
traditional forecasting models.  
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