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1. Introduction 

Hubs are facilities that serve as points for switching, 

transshipment and sorting flows in many-to-many distribution 
systems. In a particular hub location problem, the objective is to 

determine locations of hubs and also assigning other nodes to 

these hubs with minimum distribution costs. 

Networks with hubs focus on traffic flows in hub-to-hub links 
and also benefit from economies of scale for inter-hub 

transportation cost with a discount factor. Hub location problems 

have many applications, including airlines, postal delivery 

services, telecommunications, emergency services and so on. 
Consolidation is a major advantage of using hubs since flows 

with same source and different destinations can be combined on 

their route to hub nodes and also flows with different sources and 

same destination can be combined from hub nodes to their 
destination which yields a significant reduction of transportation 

costs. Basically, there are two types of hub networks problems. 
First type is single allocation in which every demand node is 

connected to just one hub and all the incoming or outgoing flow 

is routed through that single hub. Second type multi allocation 

allows demand nodes to be connected to a set of hub nodes and 
send or receive traffic flows from this set. Allocating nodes to 

hubs can’t guarantee optimal solutions for the network therefore 

most papers are concerned with determining the location of hubs 

and also assigning the nodes to them simultaneously.  
The research on hub location problems has been introduced by 

O’Kelly [17, 18]. The hub problems discussed in literature are 

typically p-hub median and p-hub center and p-hub covering 
problems. The research on the p-hub median problem with single 

assignment was introduced by O’Kelly [17, 18]. Since O’Kelly’s 

pioneering work, a lot of researchers developed the idea to many 

other structures and applications. Campbell for single allocation 
p-hub median problem proposed the first linear integer 

programming formulation [6]. Ernst and Krishnamoorthy 

presented a different linear integer programming formulation that 

uses fewer variables and constraints [12]. Skorin-Kapov et al. for 

In this paper we present the problem of designing a three-level hub median network. In our network, 

the top level consists of an incomplete network where a direct link between all central hubs is not 

necessary and an incomplete network may lead to having lower total costs. The second and third levels 

are consisted of star networks that connect the hubs to central hubs and the demand nodes to hubs and 

thus to central hubs, respectively. We also propose a hierarchical hub median problem with single 

assignment where there are no flows among nodes and the transportation costs depends on the distance 

between nodes. We analyze this problem in both complete and incomplete network among central 

hubs, and propose mathematical models for both problems. We conduct computational studies for 

these three developed models by using the CAB data. 
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the single allocation p-hub median problem produced a mixed 
integer formulation [21]. Sohn and Park  [23, 24] for the single 

allocation problem produced a linear programming formulation 

with fixed hub locations and presented methods to find optimal 

solutions for this problem and Ebery produced formulation for 
the single allocation p-hub median problem which requires fewer 

variables than all of the models previously presented [9].  

 Also, various heuristic algorithms have been developed by: 

AbdinnourHelm proposed annealing heuristic for the single 
allocation p-hub median problem [1]. Campbell developed two 

heuristics MAXFLO and ALLFLO for the single allocation p-

hub median problem [6]. Ernst and Krishnamoorthy presented a 

simulated annealing heuristic [12]. Klincewicz developed a tabu 
search and a GRASP heuristic [14, 15]. Pirkul and Schilling 

produced an efficient lagrangean relaxation method that finds 

tight upper and lower bounds [19].  Skorin-Kapov and Skorin-

Kapov [20] produced tabu search heuristic for the single 
allocation p-hub median problem and Smith et al. [22] for the 

single allocation p-hub median problem developed neural 

network approach. Iyer and Ratliff tried to locate hubs to service 

the origin–destination pairs within a guaranteed time [13]. 

Cetiner et al. proposed an iterative solution procedure for a case 

study using the Turkish postal delivery system data [7]. Elhedhli 

and Hu considered the congestion at the hubs and proposed a 
nonlinear convex cost function for the objective function of the 

single allocation p-hub median model [10]. 

Elmastas considered a three-level network where the design 

problem of a cargo delivery company which uses both airplanes 
and trucks is modeled and solved [11]. The top-level connecting 

hub airports is a star, the second level that connects hubs among 

themselves and to hub airports has a mesh structure and the third 

level connecting demand points to hubs is composed of star 
networks. Yaman presented formulation for the hierarchical hub 

median problem with single assignment [25]. She introduced 3- 

level network the so-called hierarchical network which comprise 

three types of nodes. She added central hub nodes to classical 
models in order to relax the complete connections between hubs.  

In hierarchical networks, the traffic between two nodes may pass 

four hubs or less in its path. If two nodes are assigned to hubs 

which are assigned to two different central hubs then the traffic 
passes all the four hubs. In any other combinations of 

assignment, the number of passed hubs may be less than four. 

Contreras et al. [8] presented the tree of hubs location problem 

that the hubs are connected by means of a tree. Yaman [26] 
presented allocation strategies and their effects on total routing 

costs in hub networks. This problem has two versions in single 

allocation problems and multiple allocation problems. Yaman 

and Elloumi considered Star p-hub center problem and star p-hub 
median problem with bounded path lengths [27]. Alumur et al. 

(2012) introduced the multimodal hub location and hub network 

design problem. They also studied the decision on how the hub 

networks with different possible transportation modes must be 
designed [4]. 

Figure 1 shows a hierarchical network with 28 demand nodes, 

7 hubs and four central hubs. Alumur et al. introduced 

incomplete hub networks [3]. In Incomplete hub networks a 
direct route between two hubs is not necessary but the hub 

network is connected every hub is accessible from another 

through the network. They use a parameter called hub links to 

control the number of routes between hubs. The incomplete hub 
network concept is more realistic than previous studies. Our 

model’s hub network is based on incomplete networks in the 

hierarchical structure. Since establishing links between every 
central hub is costly, the complete network may lead to non-

optimal solutions. When set-up costs for links between central 

hubs are so high that full interconnection between central hubs is 

prohibitive. By introducing incomplete network between central 
hubs, we design a hierarchical network in which a direct link 

between central hubs is not necessary. Therefore, the model can 

decide which links to be established. The selection of links may 

design a network with total costs lower than a complete central 
hub network. 
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Fig. 1. A three-level complete network on 28 nodes with 7 hubs and 4 central 

hubs. 

Figure 2 shows an incomplete hierarchical network with 28 

demand nodes, 7 hubs, four central hubs and 4 links. The model 

determines the hubs and central hubs that must be opened and 
their links; it also assigns nodes to both hub types which is 

similar to classical hub network problem. 
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Fig. 2. A three-level incomplete network on 28 nodes with 7 hubs, 4 central hubs 

and 4 links. 

We call this design an incomplete hierarchical hub median 

network problem with single assignment in condition to with 

flow and refer to it as SA-IHHMN. Now, we propose a special 
new kind of hierarchical hub median network problem where 

transportation cost is only dependent on the distance between 

nodes and we betake of flows among nodes. This particular 

problem in the field of land transportation when the flow is not 
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important and only the distance factor is decisive for the cost of 
transportation. This also is a suitable solution when the demand 

is uncontrollable or indefinite.  

We model this problem in two states: In the first state, we 

proposed this problem where that network among central hubs is 
complete and in other one, we modeled this problem where that 

network among central hubs is incomplete. 

We call this design a hierarchical hub median network problem 

with single assignment without considering flow and named it: 
SAOF-HHMN. 

And for the second model: an incomplete hierarchical hub 

median network problem with single assignment without 

considering flow as SAOF-IHHMN.  
The rest of the paper is organized as follows: in Section 2, we 

present a mixed integer programming formulation for SA-

IHHMN problem. In section 3, we present a mixed integer 

programming formulation for SAOF-HHMN and SAOF-IHHMN 
problem. In section 4, we present our computational results for 

cab data test problems and section 5 includes our conclusion and 

ideas for future developments. 

2. AN MIP formulation for SA-IHHMN problem   

In this section, we first review the formulations for the classical 
p-hub median problem with single assignment. O’Kelly [18] 

proposes a quadratic mixed 0–1 model. Labbé et al. [16] present 

a formulation with 2-index variables and exponentially many 
constraints for the hub location problem with fixed costs. Ebery 

[9] proposed a 2-index formulation with polynomial number of 

constraints.  

 We propose a mixed integer programming model for 
hierarchical hub median network problem with single assignment 

in incomplete network environment. In our model, it is allowed 

to have no direct connection between some central hubs; we used 

the ideas developed in Yaman [25], Alumur et al. [2] for our 
model’s structure. In general, in our model by changing the 

parameters can be calculated both incomplete and complete. 

The set of nodes is denoted by I, H  I is the set of possible 

alternatives for locations of hubs, and         C  H is the set of 

possible alternatives for locations of central hubs. We denote the 

number of hubs by p and the number of central hubs to be 

opened by p0 and the number of central hub links to be 
established by q. Let tim denote the amount of traffic to be routed 

from node i I to node m  I. It is obvious that tii = 0 for all i I. 

Let dij be the cost of routing a unit traffic from node i I to node 

j  I. We also assume that dij = dji for all pair of nodes i and j and 

dii = 0 for all i. Let H denote the discount factor in routing costs 

between hubs and central hubs and Let C denote the discount 
factor in routing cost among central hubs. 

The variable yijl is 1 if node i I is assigned to hub j  H and 

hub j is assigned to central hub L  C and is 0 otherwise. Let gi
jl 

denote the amount of traffic which has node i I as source or 

destination and which travels between hub j  H and central hub 

L  C and fi
kl denote the amount of traffic which has node i I 

as source and which travels from central hub k  C to central 

hub L  C \ {K}.we require that dij + djk ≥ dik for all nodes i; j; k 

in I. The variable xij is 1 if a central hub link is established 

between central hubs iC and j C and is 0 otherwise. 

We propose the following model for SA-IHHMN. 

 

MIN ∑ ∑  𝑚∈𝐼\ { i} 𝑖∈𝐼 ( tim + tmi ) ∑  𝑗∈𝐻 dij∑  𝑙∈𝑐 yijl + 

∑ ∑ ∑  𝑙∈𝑐\ { j} 𝑗∈𝐻𝑖∈𝐼 Hdjlg
i
jl + ∑ ∑ ∑  𝑙∈𝑐\ { j } 𝑗∈𝑐𝑖∈𝐼 cdjlf

i
jl 

(1) 

s.t.  

∑ ∑  L∈Cj∈H yijl = 1,  iI (2) 

yijl  ≤ yjjl , iI, j H \ { i } , L C (3) 

∑  𝑚∈𝐻 yjml≤ylll , jH, lC \ { j } (4) 

xij  ≤yiii ,  i , j  C :   i < j (5) 

xij  ≤yjjj ,  i , j  C :   i < j (6) 

∑ ∑  𝐿∈𝐶𝑗∈𝐻 yjjl = P (7) 

∑  𝐿∈𝐶 ylll= p0 (8) 

∑ ∑  𝑗∈𝐶:i < 𝑗𝑖∈𝐶 xij = q (9) 

∑  𝐾∈𝐶/{𝐿} fi
Lk -∑  𝐾∈𝐶/{𝐿} fi

kL   = ∑  𝑚∈𝐼 tim∑  𝑗∈𝐻 (yijl – ymjl ),    

iI,LC 
(10) 

gi
jl  ≥∑  𝑚∈𝐼/{𝑗} ( tim + tmi )(yijl – ymjl ) , iI, j H, L C\ { j } (11) 

fi
Lk + fi

kL  ≤  xlk∑  𝑗∈𝐼 tij      i , j  I ,   L , k C :   L < k (12) 

∑ ∑  l∈c\ {j } j∈H  yljl = 0 (13) 

gi
jl ≥ 0  ,  iI, j H, l C (14) 

fi
kL  ≥ 0 , iI, kC, lC \ { k } (15) 

yijl {0, 1 } ,  iI, j H, l C (16) 

xij {0, 1 } ,  i , j  C :   i < j (17) 

The objective function (1) minimizes the total costs of routing 

traffic between demand nodes and their hubs, between the hubs 

and their central hubs, and among central hubs. Constraint (2), 
assign each demand node to a hub and ultimately a central hub. 

If a node i is assigned to hub j and central hub l, then hub j 

should be assigned to central hub l. This is obtained via 

constraint (3). 
Constraint (4) ensures that if node j is assigned to central hub l, 

then l must be a central hub. Constraints (5) and (6) ensure that 

central hub links are established between nodes that are central 

hubs. We defined xij variables only for i < j. The number of hubs 
and central hubs to be opened is fixed to p and p0, respectively, 

with constraints (7) and (8). Due to constraint (9), the number of 

central hub links to be established is fixed to q. Constraint (10) 

assigns the outgoing traffic of node i to leave central hub I to go 
to other nodes assigned to different central hubs if nodes i & l are 

assigned by some hub. Otherwise the outgoing traffic of node i 

enter central hub l to serve the nodes that are connected to l. 

Constraint (11) determines gi
jl values in terms of the assignment 

variables. The traffic adjacent at node i and traveling between 

hub node j and central hub l is the traffic between node i and the 

nodes that are not assigned to hub j if node i is assigned to hub j 

and central hub l. Otherwise this amount is zero. Constraint (12) 
ensures that traffic flows among two central hubs if there is an 

established link between them. Constraint (13) is redundant but 

helpful to cut non-feasible solutions. The rest of the constraints 

of the model (14)–(17) represent non-negativity and binary 
requirements of variables. 
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3. MIP formulation for SAOF-HHMN and 

SAOF-IHHMN problem  

In this section, we propose two mixed integer programming 

models for a hierarchical hub median network problem with 

single assignment without flow in complete network and 

incomplete network environment. First, we present a mixed 
integer programming formulation for SAOF-HHMN. 

Let wi
jl denotes the amount of travel which has node i I as 

source or destination and which travels between hub j  H and 

central hub L  C and siLk denote the amounts of travel which 

has node i I as source and which travels from central hub k  C 

to central hub L  C \ {K}. 
We propose the following model for SAOF-HHMN. 

 
MIN ∑ ∑ ∑ ∑  𝑚∈𝐼\ { i }  𝑙∈𝐶𝑗∈𝐻𝑖∈𝐼 (dij +dji) Yijl + 

∑ ∑ ∑  𝑙∈𝐶\ { j} 𝑗∈𝐻𝑖∈𝐼 H(djl +dlj) wijl + 

∑ ∑ ∑  𝑙∈𝐶\ { j } 𝑗∈𝑐𝑖∈𝐼 c djl sijl 

(18) 

s.t.  

(2) – (4), (7), (8), (13), (16)  

wijl  ≥∑  𝑚∈𝐼/{𝑖,𝑗} (yijl – ymjl ) , iI, j H, L C\ { j } (19) 

∑  𝐾∈𝐶/{𝐿} siLk -∑  𝐾∈𝐶/{𝐿} sikL   = ∑  𝑚∈𝐼 ∑  𝑗∈𝐻 (yijl – ymjl ) , 

iI,LC 
(20) 

siLk ≤ M* ylll  , iI, LC  k ∈ C\ {L } (21) 

siLk ≤ M* ykkk , iI, LC  k ∈ C\ {L } (22) 

wijl ≤ M* yijl , iI, j H, L C\ { j } (23) 

wijl ≥ 0   , iI, j H, L C\ { j } (24) 

sikL  ≥ 0  , iI, kC, L C \ { k } (25) 

The objective function (18) minimizes the total costs of 

distance between demand nodes and their hubs, between the hubs 
and their central hubs, and among central hubs. Constraints (19) 

and (24) compute wi
jl values as assignment variables. The 

amount of travels at node i that traveling between hub j and 

central hub l is the amount of travel between node i and the 
nodes that are not assigned to hub j if node i is assigned to hub j 

and central hub l. Otherwise this amount is zero.                  
Constraint (20), if node i assigned to a hub that is assigned to 

central hub l, then the amount of travels from node i to the nodes 
is the number of nodes that are assigned to other central hubs. If 

node i is not assigned to central hub l, then the amount of travels 

from the nodes to node i is the number of nodes that are assigned 

to other central hubs. 
Due to constraints (21)-(22), when si

Lk variable can take values 

that both of nodes L and K were central hubs. We use Big M in 

this Constraint. Due to Constraint (23), when wi
jl variable can 

take values that node i assigned to hub j that is assigned to 
central hub l. We also use Big M in this Constraint. The rest of 

the constraint of the model (25) represents non-negativity of 

variable.  

Now, we present a mixed integer programming formulation for 
SAOF-IHHMN. 

We used the ideas developed in Alumur et al. [3] for our 

model’s structure. We need to know which central hub links are 

used on the path from any origin to destination to calculate the 

travel distance. For each established central hub, we would like 
to find a spanning tree rooted at this central hub that visits any 

other central hub in the central hub network using only the 

established hub links. We calculate the travel distance between 

all pairs of central hubs, using these spanning trees. 
In addition to the previously defined decision variables x, y and 

w, we use the decision variables of the mathematical model are: 
Let Vijl denoted if the spanning tree rooted at central hub L  

C uses the central hub link i; j from central hub i  C to central 

hub j  C; otherwise this amount is zero.                                                    
Let bij denoted travel distance from central hub i  C to central 

hub j  C in the central hub network. 
We propose the following model for SAOF-IHHMN. 

 
MIN ∑ ∑ ∑ ∑  𝑚∈𝐼\ { i }  𝑙∈𝐶𝑗∈𝐻𝑖∈𝐼 (dij +dji) Yijl 

+∑ ∑ ∑  𝑙∈𝐶\ { j} 𝑗∈𝐻𝑖∈𝐼 H (djl +dlj) wijl + ∑ ∑  𝑙∈𝐶\ { j }𝑗∈𝑐 c 

bjl 

(26) 

s.t.  

(2) – (9), (13), (16), (17), (19), (23), (24)  

∑  𝑖∈𝐶\ { 𝑗 } vijl ≥ ylll  + yjjj  -1 , j , lC:   j\ { l } (27) 

∑  𝑖∈𝐶\ { 𝑗 } vijl ≤ ylll ,  j , lC:   j\ { l } (28) 

vijl  + vjil ≤ xij  , i , j , lC:   i < j (29) 

blj ≥ bli  + dij * vijl – M*(1- vijl)  ,i , j , lC:   i\ { j }   and  
j\ { l } 

(30) 

bij     = bji    , i , j  C:   i\ { j } (31) 

bii  = 0  , i  C (32) 

viji  + vjij ≥ 2* xij  , i , jC:   i < j (33) 

vijl {0, 1}  , i, j, l C :   i\ { j }   and  j\ { l } (34) 

bij ≥ 0    , i , j  C :   i\ { j } (35) 

The objective function (26) minimizes the total costs of 
distance between demand nodes and their hubs, between the hubs 

and their central hubs, and among central hubs. Constraint (27) 

ensures that the degree for each central hub node is at least one, 

so that every central hub node is an end node for at least one 
central hub link. Through this constraint, the model guarantees 

that the tree rooted at central hub l will have an entering arc into 

every other central hub j. Constraint (28) determine that each 

spanning tree rooted at central hub l can have at most one 
entering arc into another central hub node j and forces the 

spanning tree arcs associated with a non-central hub node to take 

zero values.  

Due to constraint (29), forces the spanning tree arcs to be 
central hub arcs. Constraint (30), calculates the distance travel 

from one central hub node to another using the established 

spanning tree arcs in the central hub network. This Constraint is 

established when vijl =1, so we use BigM in this Constraint. 
Constraint (31), ensure that b variable will be symmetric and 

Constraint (32), ensure that the distance from a node to itself will 

be zero.Constraint (33) is a Conceptual Constraint that Reduces 

time to resolve. This Constraint ensures that when a central hub 

link is established between central hubs iC and j C, two 

corresponding V variables to takes 1 value. The rest constraints 

of the model (34)–(35) represent binary and non-negativity 

requirements of variables. 
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4. Computational  study 

We tested the performance of our models on CAB data set 

previously introduced in the literature. The Civil Aeronautics 

Board (CAB) data set introduced by O’Kelly (1987) is based on 
the airline passenger traffic between 25 US cities. The data 

contains the traffic demands and distances. We take all 25 cities 

as candidates for hubs and central hubs, i.e., H = C = I. 

All instances are solved using optimization software GAMS 
version 23.4 and CPLEX version 12.0.0. We took our runs on a 

system with a 2.40 GHz Intel Core™2 Quad Processor and 2GB 

of RAM. 

In all the instances of tables, if the number of established 
central hub links is equal to p0 (p0 -1)/2, then these instances are 

complete network. Also if the number of established central hub 

links is less than p0 (p0 -1)/2, then these instances are incomplete 

network.   

4.1. SA-IHHMN problem  

We tested the performance of our SA-IHHMN model on CAB 

data with 10, 15 and 25 cities. For the CAB data set with 10, 15 

and 25 cities, p ranging from 3 to 6, 3 to 7 and 3 to 8, 
respectively. For all state, p0 ranging from 2 to 5 and we tested 

differing q values for our incomplete hierarchical p-hub median 

network design formulation. As customarily done in the 

literature, we took αC and αH values to be 1, 0.9, and 0.8. We 
report our results on the CAB data set with 10, 15 and 25 cities in 

Table 1, Table 2 and Table 3, respectively. For each instance, 

Tables reports the required CPU time in seconds, the locations of 

the hub nodes, the locations of the central hub nodes, and 
transportation costs. 

3.3.3. CAB data with 10 cities 

In Table 1, on the average the model is solved within 1.6 sec of 
CPU time. The minimum CPU time requirement was about 1 

sec, whereas the maximum was about 8 sec. 

In this Table, we observe that Chicago (4) is always selected as 

a central hub node and Dallas (7) is usually selected as a central 
hub node and when we consider four or more central hub nodes, 

Denver (8) is always selected as a central hub node. 
The percentage of increase in transportation costs is reported 

as zero for the instances with complete central hub networks 
The highest increase we obtained at the CAB instances in Table 

1 was 2.1% for instance with p=6, p0=5, q=6 and (αC ,αH) equal 

to (1,1). We also observed from Table 1 that the percentage of 

increase in the transportation costs is lower when values of 
discount factors are lower. 

In Fig. 3, we observe the increase in transportation costs with 

respect to the number of established hub links; we decided to 

draw the curve and analyzed the instance with different values of 
discount factors, p = 6 and p0=5. Fig. 3 depicts the resulting the 

curve. 
In Fig. 3, when we forced the model to establish with six 

central hub links the percent increase in transportation costs was 
about 2%. This value was about 0.01% when we reduced one 

central hub link from the complete central hub network (q = 9). 

Observe that, there is a steep increase in the curve below q = 7. 

 

Table 1. The results on the CAB data set with 10 cities for SA-IHHMN problem. 

(αC,αH

) 
p 

P

0 
q 

CP

U 

Ti

me 

(s) 

Hub 
locations 

Central 
Hub 

location
s 

Transportatio
n Costs 

(1,1) 3 2 1 1 4,7,9 4,7 779280000 
(1,1) 4 2 1 1 4,6,7,9 4,9 773390000 
(1,1) 5 2 1 1 4,5,6,7,9 4,9 773300000 
(1,1) 4 3 2 6 4,6,7,9 4,7,9 773390000 
(1,1) 5 3 2 8 4,5,6,7,9 4,5,9 773300000 
(1,1) 4 3 3 1 4,7,8,9 4,7,8 740720000 
(1,1) 5 3 3 1 4,5,7,8,9 4,7,8 740630000 
(1,1) 5 4 4 4 4,6,7,8,9 4,7,8,9 734830000 
(1,1) 6 4 4 3 4,5,6,7,8,9 4,7,8,9 734740000 
(1,1) 5 4 5 1 1,4,7,8,9 1,4,7,8 714430000 
(1,1) 6 4 5 1 1,4,7,8,9,1

0 
1,4,7,8 714430000 

(1,1) 5 4 6 1 1,4,7,8,9 1,4,7,8 713690000 
(1,1) 6 4 6 1 1,4,5,7,8,9 1,4,7,8 713690000 
(1,1) 6 5 6 2 1,4,6,7,8,9 1,4,7,8,9 704050000 
(1,1) 6 5 7 1 1,4,6,7,8,9 1,4,7,8,9 694300000 
(1,1) 6 5 8 1 1,4,6,7,8,9 1,4,7,8,9 690500000 
(1,1) 6 5 9 1 1,4,6,7,8,9 1,4,7,8,9 689760000 
(1,1) 6 5 10 1 1,4,6,7,8,9 1,4,7,8,9 689730000 

(0.9,0.9) 3 2 1 1 4,7,9 4,7 749130000 
(0.9,0.9) 4 2 1 1 3,4,7,9 4,9 735660000 
(0.9,0.9) 5 2 1 1 3,4,7,8,9 4,9 723340000 
(0.9,0.9) 4 3 2 4 3,4,7,9 4,7,9 735660000 
(0.9,0.9) 5 3 2 6 3,4,7,8,9 4,7,9 723340000 
(0.9,0.9) 4 3 3 1 4,7,8,9 4,7,8 702100000 
(0.9,0.9) 5 3 3 1 1,4,7,8,9 4,7,8 693130000 
(0.9,0.9) 5 4 4 3 3,4,7,8,9 4,7,8,9 688630000 
(0.9,0.9) 6 4 4 3 1,3,4,7,8,9 4,7,8,9 679660000 
(0.9,0.9) 5 4 5 1 1,4,7,8,9 1,4,7,8 669470000 
(0.9,0.9) 6 4 5 1 1,4,7,8,9,1

0 
1,4,7,8 665800000 

(0.9,0.9) 5 4 6 1 1,4,7,8,9 1,4,7,8 668800000 
(0.9,0.9) 6 4 6 1 1,4,7,8,9,1

0 
1,4,7,8 665140000 

(0.9,0.9) 6 5 6 2 1,3,4,7,8,9 1,4,7,8,9 651780000 
(0.9,0.9) 6 5 7 1 1,3,4,7,8,9 1,4,7,8,9 643010000 
(0.9,0.9) 6 5 8 1 1,3,4,7,8,9 1,4,7,8,9 639590000 
(0.9,0.9) 6 5 9 1 1,3,4,7,8,9 1,4,7,8,9 638930000 
(0.9,0.9) 6 5 10 1 1,3,4,7,8,9 1,4,7,8,9 638900000 
(0.8,0.8) 3 2 1 1 4,7,9 4,7 718970000 
(0.8,0.8) 4 2 1 1 3,4,7,9 4,9 692030000 
(0.8,0.8) 5 2 1 1 3,4,7,8,9 4,9 667390000 

(0.8,0.8) 4 3 2 3 3,4,7,9 4,7,9 692030000 
(0.8,0.8) 5 3 2 3 3,4,7,8,9 3,4,9 667390000 
(0.8,0.8) 4 3 3 1 4,7,8,9 4,7,8 663480000 
(0.8,0.8) 5 3 3 1 1,4,7,8,9 4,7,8 645540000 
(0.8,0.8) 5 4 4 2 3,4,7,8,9 4,7,8,9 636540000 
(0.8,0.8) 6 4 4 2 1,3,4,7,8,9 4,7,8,9 618600000 
(0.8,0.8) 5 4 5 1 1,4,7,8,9 1,4,7,8 624500000 
(0.8,0.8) 6 4 5 2 1,3,4,7,8,9 4,7,8,9 615920000 
(0.8,0.8) 5 4 6 1 1,4,7,8,9 1,4,7,8 623910000 
(0.8,0.8) 6 4 6 1 1,3,4,7,8,9 1,4,7,9 614110000 
(0.8,0.8) 6 5 6 1 1,3,4,7,8,9 1,4,7,8,9 593620000 
(0.8,0.8) 6 5 7 1 1,3,4,7,8,9 1,4,7,8,9 585830000 
(0.8,0.8) 6 5 8 1 1,3,4,7,8,9 1,4,7,8,9 582790000 
(0.8,0.8) 6 5 9 1 1,3,4,7,8,9 1,4,7,8,9 582200000 
(0.8,0.8) 6 5 10 1 1,3,4,7,8,9 1,4,7,8,9 582170000 

(0.8,0.9) 3 2 1 1 4,7,9 4,7 730540000 
(0.8,0.9) 4 2 1 1 4,7,8,9 4,7 718220000 
(0.8,0.9) 5 2 1 1 1,4,7,8,9 4,7 709250000 
(0.8,0.9) 4 3 2 2 3,4,7,9 4,7,9 705500000 
(0.8,0.9) 5 3 2 3 3,4,7,8,9 4,7,9 693180000 
(0.8,0.9) 4 3 3 1 4,7,8,9 4,7,8 675050000 
(0.8,0.9) 5 3 3 1 1,4,7,8,9 4,7,8 666080000 
(0.8,0.9) 5 4 4 2 3,4,7,8,9 4,7,8,9 650010000 
(0.8,0.9) 6 4 4 2 1,3,4,7,8,9 4,7,8,9 641040000 
(0.8,0.9) 5 4 5 1 1,4,7,8,9 1,4,7,8 636070000 
(0.8,0.9) 6 4 5 1 1,4,7,8,9,1

0 
1,4,7,8 632410000 

(0.8,0.9) 5 4 6 1 1,4,7,8,9 1,4,7,8 635480000 
(0.8,0.9) 6 4 6 1 1,4,7,8,9,1

0 
1,4,7,8 631820000 

(0.8,0.9) 6 5 6 1 1,3,4,7,8,9 1,4,7,8,9 607090000 
(0.8,0.9) 6 5 7 1 1,3,4,7,8,9 1,4,7,8,9 599300000 
(0.8,0.9) 6 5 8 1 1,3,4,6,7,8 1,4,6,7,8 596140000 

(0.8,0.9) 6 5 9 1 1,3,4,6,7,8 1,4,6,7,8 595550000 
(0.8,0.9) 6 5 10 1 1,3,4,6,7,8 1,4,6,7,8 595490000 
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Fig. 3. The increase in transportation costs for CAB data with 10 nodes, 6 hubs 

and 5 central hubs. 

In Fig. 4, we give the United States map with the 10 cities and 

illustrate a sample of solutions on the CAB data set. In order to 

analyze the flow behavior of the designed network links. We use 
green color to represent the central hubs and orange color to 

represent the hubs. We explored the flow data with (αC ,αH) equal 

to (1, 1), p=5 and p0=3 corresponding to instances (a) of Fig. 4 

and also for the rest of the samples have been determined. 
 

 

Fig. 4. CAB data set results with 10 cities for SA-IHHMN problem 

We observe in Fig. 4, In addition to Chicago (4), Dallas (7) 

and Denver (8), Detroit (9) also is good location for hub or 
central hubs. 

3.3.4. CAB data with 15 cities 

In Table 2, we report our results on the CAB data set with 15 
cities. 

In this table, on the average the model is solved within 72.51 s 

(1min and 12.51s) of CPU time. The minimum CPU time 

requirement was about 9 s for the all instances with p=p0, 
whereas the maximum was about 549 s (9min and 9s) for the 

instance with p=7, p0=5, q=6 and (αC ,αH) equal to (1, 1).  

In Table 2, we observe that Chicago (4) is always selected as a 

central hub node and Kansas City (11) is usually selected as a 

central hub node. At the instances where we located four or 

more central hub nodes, Atlanta (1) is always selected as a 

central hub node. For instances with p0=5, differing q and p 

values and (αC, αH) equal to (0.9, 0.9) and (1, 1), the cities 

Atlanta (1), Chicago (4), Dallas (7), Denver (8) and Kansas City 

(11) are usually selected as a central hub node. For instances 

with p0=5 and differing q and p values, when (αC, αH) equal to 

(0.8, 0.8), Detroit (9) city instead of Kansas City (11) selected as 

a central hub node. For instances with p0=5 and differing q and p 

values, when (αC, αH) equal to (0.8, 0.9), Los Angeles (12) city 

instead of Detroit (9) selected as a central hub node.  

 

Table 2. The results on the CAB data set with 15 cities for SA-IHHMN problem 
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(1,1) 3 2 1 37 4,7,11 4,11 2834900000 0.0 
(1,1) 4 2 1 43 1,4,7,11 4,11 2781500000 0.0 
(1,1) 5 2 1 22 1,4,7,9,11 4,11 2728600000 0.0 
(1,1) 4 3 2 331 1,4,7,11 1,4,11 2781500000 2.6 
(1,1) 5 3 2 298 1,4,7,9,11 4,7,11 2728600000 2.7 
(1,1) 6 3 2 87 1,4,7,8,9,11 1,4,11 2680900000 2.1 
(1,1) 4 3 3 76 1,4,7,8 4,7,8 2710500000 0.0 
(1,1) 5 3 3 51 1,4,7,8,9 4,7,8 2657600000 0.0 
(1,1) 6 3 3 26 1,4,7,8,9,11 1,4,11 2626800000 0.0 
(1,1) 5 4 4 233 1,4,7,8,9 1,4,7,8 2657600000 2.5 
(1,1) 6 4 4 209 1,4,7,8,9,11 1,4,9,11 2620300000 1.6 
(1,1) 7 4 4 195 1,4,7,8,9,11,13 1,4,11,13 2611800000 1.4 
(1,1) 5 4 5 30 1,4,7,8,9 1,4,7,8 2601500000 0.4 
(1,1) 6 4 5 56 1,4,7,8,9,11 1,4,9,11 2580400000 0.1 
(1,1) 7 4 5 45 1,4,6,7,8,9,11 1,4,9,11 2577900000 0.1 
(1,1) 5 4 6 17 1,4,7,8,9 1,4,7,8 2591600000 0.0 
(1,1) 6 4 6 25 1,4,7,8,9,11 1,4,9,11 2578500000 0.0 
(1,1) 7 4 6 31 1,4,6,7,8,9,11 1,4,9,11 2576000000 0.0 
(1,1) 6 5 6 501 1,4,7,8,9,11 1,4,7,8,11 2574800000 2.2 
(1,1) 7 5 6 549 1,4,6,7,8,9,11 1,4,6,9,11 2562700000 1.7 
(1,1) 6 5 7 83 1,4,7,8,9,11 1,4,7,9,11 2550600000 1.2 
(1,1) 7 5 7 297 1,4,6,7,8,9,11 1,4,7,9,11 2548100000 1.1 
(1,1) 6 5 8 32 1,4,7,8,9,11 1,4,7,8,11 2533100000 0.5 
(1,1) 7 5 8 132 1,4,7,8,9,10,11 1,4,7,8,11 2533100000 0.5 
(1,1) 6 5 9 20 1,4,7,8,9,11 1,4,7,8,11 2521900000 0.1 
(1,1) 7 5 9 30 1,4,7,8,9,11,14 1,4,7,8,11 2521900000 0.1 
(1,1) 6 5 10 13 1,4,7,8,9,11 1,4,7,8,11 2520500000 0.0 
(1,1) 7 5 10 25 1,4,7,8,9,11,12 1,4,7,8,11 2520500000 0.0 

(0.9,0.9) 3 2 1 51 1,4,11 4,11 2767700000 0.0 
(0.9,0.9) 4 2 1 57 1,4,8,11 4,11 2682700000 0.0 
(0.9,0.9) 5 2 1 20 1,4,7,8,11 4,11 2608800000 0.0 
(0.9,0.9) 4 3 2 379 1,4,8,11 1,4,11 2682700000 3.3 
(0.9,0.9) 5 3 2 364 1,4,7,8,11 1,4,11 2608800000 3.4 
(0.9,0.9) 6 3 2 111 1,4,7,8,9,11 1,4,11 2535600000 2.4 
(0.9,0.9) 4 3 3 41 1,4,7,8 4,7,8 2596200000 0.0 
(0.9,0.9) 5 3 3 23 1,4,7,8,9 4,7,8 2523000000 0.0 
(0.9,0.9) 6 3 3 13 1,4,7,8,9,12 4,7,8 2476500000 0.0 
(0.9,0.9) 5 4 4 71 1,4,7,8,9 1,4,7,8 2523000000 2.4 
(0.9,0.9) 6 4 4 78 1,4,7,8,9,12 1,4,7,8 2523000000 4.4 
(0.9,0.9) 7 4 4 125 1,4,7,8,9,11,14 1,4,7,8 2476500000 3.4 
(0.9,0.9) 5 4 5 21 1,4,7,8,9 1,4,7,8 2472500000 0.4 
(0.9,0.9) 6 4 5 19 1,4,7,8,9,11 1,4,9,11 2426000000 0.4 
(0.9,0.9) 7 4 5 22 1,4,6,7,8,9,11 1,4,9,11 2403100000 0.4 
(0.9,0.9) 5 4 6 13 1,4,7,8,9 1,4,7,8 2463600000 0.0 
(0.9,0.9) 6 4 6 12 1,4,7,8,9,11 1,4,9,11 2417200000 0.0 
(0.9,0.9) 7 4 6 12 1,4,6,7,8,9,11 1,4,9,11 2394300000 0.0 
(0.9,0.9) 6 5 6 390 1,4,7,8,9,11 1,4,7,8,11 2426000000 2.4 
(0.9,0.9) 7 5 6 214 1,4,6,7,8,9,11 1,4,6,9,11 2393600000 2.1 
(0.9,0.9) 6 5 7 29 1,4,7,8,9,11 1,4,7,9,11 2382900000 0.6 
(0.9,0.9) 7 5 7 60 1,4,6,7,8,9,11 1,4,7,9,11 2360000000 0.7 
(0.9,0.9) 6 5 8 29 1,4,7,8,9,11 1,4,7,8,11 2371900000 0.1 
(0.9,0.9) 7 5 8 33 1,4,7,8,9,10,11 1,4,7,8,11 2349000000 0.2 
(0.9,0.9) 6 5 9 19 1,4,7,8,9,11 1,4,7,8,11 2368900000 0.1 
(0.9,0.9) 7 5 9 23 1,4,7,8,9,11,14 1,4,7,8,11 2344700000 0.1 
(0.9,0.9) 6 5 10 17 1,4,7,8,9,11 1,4,7,8,11 2368800000 0.0 
(0.9,0.9) 7 5 10 21 1,4,7,8,9,11,12 1,4,7,8,11 2343400000 0.0 
(0.8,0.8) 3 2 1 19 1,4,11 4,11 2666100000 0.0 
(0.8,0.8) 4 2 1 38 1,4,11,12 4,11 2547700000 0.0 
(0.8,0.8) 5 2 1 26 1,4,9,11,12 4,11 2454200000 0.0 
(0.8,0.8) 4 3 2 152 1,4,8,12 1,4,11 2547700000 2.7 
(0.8,0.8) 5 3 2 192 1,4,7,9,12 1,4,11 2454200000 2.8 
(0.8,0.8) 6 3 2 120 1,4,7,9,11,12 4,7,11 2361400000 2.9 
(0.8,0.8) 4 3 3 18 1,4,7,8 4,7,8 2481900000 0.0 
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(0.8,0.8) 5 3 3 16 1,4,7,8,9 4,7,8 2388400000 0.0 
(0.8,0.8) 6 3 3 9 1,4,7,8,9,12 4,7,8 2295400000 0.0 
(0.8,0.8) 5 4 4 171 1,4,7,8,9 1,4,7,8 2388400000 2.3 
(0.8,0.8) 6 4 4 58 1,4,7,8,9,12 1,4,7,8 2295400000 2.4 
(0.8,0.8) 7 4 4 63 1,4,7,8,9,11,14 1,4,7,8 2249600000 2.5 
(0.8,0.8) 5 4 5 24 1,4,7,8,9 1,4,7,8 2343500000 0.4 
(0.8,0.8) 6 4 5 14 1,4,7,8,9,12 1,4,7,8 2250600000 0.4 

(0.8,0.8) 7 4 5 13 1,4,7,8,9,12,14 1,4,7,8 2204700000 0.4 
(0.8,0.8) 5 4 6 17 1,4,7,8,9 1,4,7,8 2334100000 0.0 
(0.8,0.8) 6 4 6 9 1,4,7,8,9,12 1,4,7,8 2241200000 0.0 
(0.8,0.8) 7 4 6 9 1,4,7,8,9,12,14 1,4,7,8 2195300000 0.0 
(0.8,0.8) 6 5 6 78 1,4,7,8,9,12 1,4,7,8,9 2250600000 2.4 
(0.8,0.8) 7 5 6 129 1,4,7,8,9,12,14 1,4,7,8,12 2204700000 2.5 
(0.8,0.8) 6 5 7 23 1,4,7,8,9,12 1,4,7,8,9 2210200000 0.6 
(0.8,0.8) 7 5 7 30 1,4,7,8,9,12,14 1,4,7,8,9 2164300000 0.6 
(0.8,0.8) 6 5 8 16 1,4,7,8,9,12 1,4,7,8,9 2200400000 0.1 
(0.8,0.8) 7 5 8 21 1,4,7,8,9,12,14 1,4,7,8,9 2154600000 0.1 
(0.8,0.8) 6 5 9 12 1,4,7,8,9,12 1,4,7,8,9 2197700000 0.1 
(0.8,0.8) 7 5 9 16 1,4,7,8,9,12,14 1,4,7,8,9 2151900000 0.1 
(0.8,0.8) 6 5 10 11 1,4,7,8,9,12 1,4,7,8,9 2197600000 0.0 
(0.8,0.8) 7 5 10 19 1,4,7,8,9,12,14 1,4,7,8,9 2151800000 0.0 
(0.8,0.9) 3 2 1 36 4,11,12 11,12 2703500000 0.0 
(0.8,0.9) 4 2 1 45 4,7,11,12 11,12 2629700000 0.0 
(0.8,0.9) 5 2 1 18 1,4,7,8,11 4,11 2571400000 0.0 
(0.8,0.9) 4 3 2 153 1,4,11,12 4,11,12 2580200000 2.6 
(0.8,0.9) 5 3 2 182 1,4,7,11,12 4,11,12 2506400000 2.7 
(0.8,0.9) 6 3 2 105 1,4,7,9,11,12 4,11,12 2433200000 1.6 
(0.8,0.9) 4 3 3 19 1,4,7,8 4,7,8 2514400000 0.0 
(0.8,0.9) 5 3 3 14 1,4,7,8,9 4,7,8 2441200000 0.0 
(0.8,0.9) 6 3 3 11 1,4,7,8,9,12 4,7,8 2394700000 0.0 
(0.8,0.9) 5 4 4 57 1,4,7,8,9 1,4,7,8 2408700000 2.3 
(0.8,0.9) 6 4 4 40 1,4,7,8,9,12 1,4,7,8 2348200000 1.7 
(0.8,0.9) 7 4 4 68 1,4,7,9,11,12 1,4,11,12 2333100000 2.1 
(0.8,0.9) 5 4 5 20 1,4,7,8,9 1,4,7,8 2363800000 0.4 
(0.8,0.9) 6 4 5 13 1,4,7,8,9,12 1,4,7,8 2317400000 0.4 
(0.8,0.9) 7 4 5 14 1,4,7,8,9,12,14 1,4,7,8 2294500000 0.4 
(0.8,0.9) 5 4 6 14 1,4,7,8,9 1,4,7,8 2354400000 0.0 
(0.8,0.9) 6 4 6 10 1,4,7,8,9,12 1,4,7,8 2308000000 0.0 
(0.8,0.9) 7 4 6 10 1,4,7,8,9,12,14 1,4,7,8 2285100000 0.0 
(0.8,0.9) 6 5 6 38 1,4,7,8,9,12 1,4,7,8,12 2270900000 1.6 
(0.8,0.9) 7 5 6 50 1,4,7,8,9,12,14 1,4,7,8,12 2248000000 1.6 
(0.8,0.9) 6 5 7 13 1,4,7,8,9,12 1,4,7,8,12 2240900000 0.2 
(0.8,0.9) 7 5 7 21 1,4,7,8,9,12,14 1,4,7,8,12 2218000000 0.2 
(0.8,0.9) 6 5 8 14 1,4,7,8,9,12 1,4,7,8,12 2238900000 0.1 
(0.8,0.9) 7 5 8 16 1,4,7,8,9,12,14 1,4,7,8,12 2216000000 0.1 
(0.8,0.9) 6 5 9 17 1,4,7,8,9,12 1,4,7,8,12 2236900000 0.1 
(0.8,0.9) 7 5 9 13 1,4,7,8,9,12,14 1,4,7,8,12 2214000000 0.1 
(0.8,0.9) 6 5 10 12 1,4,7,8,9,12 1,4,7,8,12 2235900000 0.0 
(0.8,0.9) 7 5 10 14 1,4,7,8,9,12,14 1,4,7,8,12 2213000000 0.0 

In all instances, Atlanta (1), Chicago (4), Cleveland (6), Dallas 

(7), Denver (8), Detroit (9), Kansas City (11), Los Angeles (12) 
and Memphis (13), at least once selected as a central hub node. 

We can conclude that the locations of these cities in the United 

States are important. 

The percentage of increase in transportation costs is reported as 
zero for the instances with complete central hub networks. The 

highest increase we obtained at the CAB instances in Table 2 

was 4.4% for the instance with p=6, p0=4, q=4 and (αC ,αH) equal 

to (0.9, 0.9). We also observed from Table 2 that the percentage 
of increase in the transportation costs is higher for instances with 

lowest number of established central hub links (q). 

In Fig. 5 and Fig. 6, we observe the increase in transportation 

costs with respect to the number of established central hub links; 
we decided to draw the curve and analyzed the instance with 

different values of discount factors and different values of central 

hub links, p = 6,7 and p0=5. Fig. 5 and Fig. 6 depicts the resulting 

the curve. 

 

Fig. 5. The increase in transportation costs for CAB data with 15 nodes, 6 hubs 

and 5 central hubs. 

In Fig. 5 and Fig. 6 , when we forced the model to establish 

with six central hub links the percent increase in transportation 
costs was about 1.6% - 2.4% and 1.6% - 2.5%, respectively . 

This value was about 0. 1% when we reduced one central hub 

link from the complete central hub network (q = 9). In Fig. 5 and 

Fig. 6, Observe that there is a steep increase in the curve below q 
= 7. 

 

  

Fig. 6. The increase in transportation costs for CAB data with 15 nodes, 7 hubs 

and 5 central hubs. 

In Fig. 7, we give the United States map with the 15 cities and 

illustrate a sample of solutions on the CAB data set. In order to 

analyze the flow behavior of the designed network links. We use 

green color to represent the central hubs and orange color to 
represent the hubs. We explored the flow data with (αC ,αH) equal 

to (1, 1), p=5 and p0=3 corresponding to instances (a) of Fig. 7 

and also for the rest of the samples have been determined. 

 
Fig. 7. CAB data set results with 15 cities for SA-IHHMN problem 
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We observe in Fig. 7 that Atlanta (1), Chicago (4), Dallas (7), 

Denver (8), Detroit (9), Kansas City (11) are good location for 

hub or central hubs. 

3.3.5. CAB data with 25 cities 

In Table 3, for each instance with gap equal to zero, on the 
average the model is solved within 4339.67 sec (72min and 

19.67s) of CPU time. Also, Instances with p0=2 and q=1 are 

always optimal. For other instances, the time was limited to 2000 

sec (about 33min) of CPU. Values ‘‘>2000’’ of column Time 

means that CPLEX requires more than 2000 sec of CPU time to 
solve each of the instances. In these cases, column GAP reports 

the gap at the stopping time.  

By analyzing this table, becomes evident that all gaps is less 

than 9%. In fact, within CPU time we have reached the Sub-
optimal solution. In instances with gap nonzero, The largest gap 

is 8.4 % for instance with p=6, p0=3, q=2 and (αC ,αH) equal to 

(0.9, 0.9).The smallest gap is 2.7% for instance with p=8, p0=5, 

q=10 and (αC ,αH) equal to (0.9, 0.9) and the average gaps are 5% 
that this show the results obtained is close to the optimal 

solution. The differences between gaps of difficult instances are 

low.

 

Table 3. The results on the CAB data set with 25 cities for SA-IHHMN problem 

(αC,αH) p P0 q 
CPU 

Time (s) 
Hub locations 

Central Hub 
locations 

GAP Transportation costs % Increase in transportation 
costs 

(1,1) 3 2 1 3414 4,8,20 4,8 0.000 10740000000 3.4 
(1,1) 4 2 1 4339 4,8,17,20 4,20 0.000 10500000000 1.1 
(1,1) 5 2 1 4910 4,8,17,20,21 4,20 0.000 10390000000 0.0 
(1,1) 6 3 2 > 2000 2,4,8,13,17,20 4,13,20 0.069 10610000000 3.0 
(1,1) 6 3 3 > 2000 1,4,7,8,17,20 1,4,20 0.042 10300000000 0.0 
(1,1) 7 4 4 > 2000 4,8,12,13,14,17,25 4,8,13,25 0.075 10390000000 4.0 

(1,1) 7 4 5 > 2000 1,4,8,12,16,17,25 1,4,8,25 0.054 10140000000 1.5 
(1,1) 7 4 6 > 2000 1,4,8,13,17,20,24 1,4,13,20 0.040 9988500000 0.0 
(1,1) 8 5 7 > 2000 1,2,4,7,8,12,17,20 1,4,7,8,20 0.065 10050000000 3.1 
(1,1) 8 5 8 > 2000 1,2,4,7,8,12,17,20 1,4,7,8,20 0.048 9855300000 1.1 
(1,1) 8 5 9 > 2000 1,2,4,7,8,12,17,20 1,4,7,8,20 0.045 9824100000 0.8 
(1,1) 8 5 10 > 2000 1,2,4,7,8,12,17,20 1,4,7,8,20 0.038 9745600000 0.0 

(0.9,0.9) 3 2 1 3610 2,4,12 2,4 0.000 10500000000 4.6 
(0.9,0.9) 4 2 1 4578 12,17,20,21 20,21 0.000 10160000000 1.2 
(0.9,0.9) 5 2 1 4967 12,17,20,21,24 20,21 0.000 10040000000 0.0 
(0.9,0.9) 6 3 2 > 2000 1,4,8,13,17,20 1,4,20 0.084 10200000000 4.3 
(0.9,0.9) 6 3 3 > 2000 1,4,8,13,17,20 1,4,20 0.051 9782700000 0.0 
(0.9,0.9) 7 4 4 > 2000 4,7,8,12,17,20,24 4,7,8,20 0.037 9349900000 0.9 
(0.9,0.9) 7 4 5 > 2000 4,7,8,12,17,20,24 4,7,8,20 0.035 9316800000 0.5 
(0.9,0.9) 7 4 6 > 2000 1,4,7,11,12,17,20 1,4,11,20 0.031 9265900000 0.0 
(0.9,0.9) 8 5 7 > 2000 1,4,7,8,12,17,20,24 1,4,7,8,20 0.043 9132200000 1.9 
(0.9,0.9) 8 5 8 > 2000 1,4,7,8,12,17,20,24 1,4,7,8,20 0.030 8997700000 0.4 
(0.9,0.9) 8 5 9 > 2000 1,4,7,8,12,17,20,24 1,4,7,8,20 0.028 8969600000 0.1 
(0.9,0.9) 8 5 10 > 2000 1,4,7,8,12,17,20,24 1,4,7,8,20 0.027 8960300000 0.0 
(0.8,0.9) 3 2 1 3605 4,12,25 4,25 0.000 10140000000 2.7 
(0.8,0.9) 4 2 1 4780 4,8,17,20 4,20 0.000 9946400000 0.7 
(0.8,0.9) 5 2 1 4990 4,8,12,21,25 4,8 0.000 9875900000 0.0 
(0.8,0.9) 4 3 2 > 2000 12,17,20,21 12,20,21 0.048 9782700000 0.9 
(0.8,0.9) 4 3 3 > 2000 2,5,7,12 5,7,12 0.047 9696400000 0.0 
(0.8,0.9) 7 4 4 > 2000 1,4,7,8,17,20,24 1,4,7,20 0.083 9381600000 5.3 
(0.8,0.9) 7 4 5 > 2000 4,7,12,17,20,22,24 4,7,12,20 0.036 8925500000 0.2 
(0.8,0.9) 7 4 6 > 2000 4,7,12,17,20,22,24 4,7,12,20 0.069 8908600000 0.0 
(0.8,0.9) 8 5 7 > 2000 1,4,7,12,17,20,22,24 1,4,7,12,20 0.057 8743700000 2.3 
(0.8,0.9) 8 5 8 > 2000 1,4,7,8,12,17,20,24 1,4,7,12,20 0.044 8624300000 0.9 
(0.8,0.9) 8 5 9 > 2000 1,4,7,12,17,20,22,24 1,4,7,12,20 0.043 8602100000 0.6 
(0.8,0.9) 8 5 10 > 2000 1,4,7,12,14,17,20,22 1,4,7,12,20 0.035 8547000000 0.0 

In Table 3, we observe that Chicago (4) is always selected as a 

central hub node and at the instances where we located four or 

more central hub nodes; Pittsburgh (20) is usually selected as a 

central hub node.  

For instances with p0=5 and differing q and p values, when (α

C, αH) equal to (0.8, 0.9), Atlanta (1), Chicago (4), Dallas (7), 

Los Angeles (12) and Pittsburgh (20) are always selected as a 

central hub node. For instances with p0=5 and differing q and p 

values, when (αC, αH) equal to (1, 1) and (0.9, 0.9), Denver (8) 

instead of Los Angeles (12) selected as a central hub node. 

The percentage of increase in transportation costs is reported as 

zero for the instances with complete central hub networks. The 

highest increase we obtained at the CAB instances in Table 3 

was 5.3% for instance with p=7,p0=4,q=4 and (αC, αH) equal to 

(0.8,0.9) . We also observed from Table 3 that the percentage of 

increase in the transportation costs is higher for instances with 
lowest number of established central hub links (q). 

In Fig. 8 and Fig. 9, we observe the increase in transportation 

costs with respect to the number of established central hub links; 

we decided to draw the curve and analyzed the instance with 
different values of discount factors, p = 7,8 and p0=4,5. Fig. 8 

and Fig. 9 depicts the resulting the curve. 
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Fig. 8. The increase in transportation costs for CAB data with 25 nodes, 8 hubs 

and 5 central hubs. 

In Fig. 8, when we forced the model to establish with seven 

central hub links the percent increase in transportation costs was 
about 1.9% - 3.1% . This value was about 0. 1% - 0.8% when we 

reduced one central hub link from the complete central hub 

network (q = 9). In Fig. 8, Observe that there is a steep increase 

in the curve below q = 8. 
 

 

Fig. 9. The increase in transportation costs for CAB data with 25 nodes, 7 hubs 

and 4 central hubs. 

In Fig. 9, when we forced the model to establish with four 

central hub links, the percent increase in transportation costs was 

about 0.9% - 5.3% . This value was about 0. 2% - 1.5% when we 

reduced one central hub link from the complete central hub 

network (q = 5). In Fig. 9, Observe that curve for (αC, αH) 

equal to (0.8, 0.9) is disproportionate with the rest of the curves. 

This is due to the difference gaps in this instance. 

By analyzing the curve, we can observe the tradeoff between 
establishing an incomplete central hub network versus the 

increase transportation costs.  

In Fig. 10, we give the United States map with the 25 cities and 

illustrate a sample of solutions on the CAB data set. In order to 
analyze the flow behavior of the designed network links. We use 

green color to represent the central hubs and orange color to 

represent the hubs. We explored the flow data with (αC ,αH) equal 

to (1, 1), p=7 and p0=4 corresponding to instances (a) of Fig. 10 
and also for the rest of the samples have been determined. 

 Fig. 10. CAB data set results with 25 cities for SA-IHHMN problem 

We observe in Fig. 7 that Atlanta (1), Chicago (4), Dallas (7), 

Los Angeles (12) and Pittsburgh (20) are good location for 
central hubs. 

4.2. SAOF-HHMN problem 

We tested the performance of our SAOF-HHMN model on 
CAB data with 25 cities to evaluate the effect of some 

parameters on the total cost and the locations of central hubs and 

to see the computation times. 

3.3.6. Effect of the number of central hubs and 

discount factors on the total cost 

In our first experiment, we investigate how the total cost is 

affected by changing the number of central hubs. To see the 

effect of the number of central hubs on the total cost, we use 

instances from the CAB data with n=25 and p=6, 7. 
In Figs. 11 and 12, we plot the total costs for different values of 

p0 and discount factors for the CAB data. 

 

 Fig. 11. The total costs for the CAB data with 25 nodes and 6 hubs. 
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Fig. 12. The total costs for the CAB data with 25 nodes and 7 hubs. 

We observe that in all cases, for a fixed choice of (αC, αH), 

the total cost decreases as we increase p0. We see that substantial 

cost improvements are possible when we move from a star hub 
network (p0 = 1) towards a complete hub network (p0 = p). 

In Figs. 13, per plot, we calculate the total costs for twenty 
runs. If we compare the three plots; we observe that if values of 

discount factors are reduced, then the total cost is reduced. 

 

 

Fig. 13. The total costs for twenty runs. 

When (αC, αH) equal to (1, 1), (0.8, 0.9) and (0.7, 0.8), the 

total cost for twenty runs are 15844580, 14581510, 13751840, 

respectively. 

We report our results on the CAB data set with 25 cities in 
Table 4. For each instance, Table reports the required CPU time 

in seconds and transportation costs.  

We investigate how the computation times are affected by the 

parameters of the problem. In Table 4, we observe that the 
instances with p0 = p are the easiest instances. The most difficult 

instances are those with p0 unequal p. The longest computation 

time is about 7min (357sec) for the instances with p=7, p0 = 2 

and (αC ,αH) equal to  (0.8, 0.9). 
The results in table 4 show the effect of increasing the number 

of central hubs and discount factors on the total cost. For 

instances with (αC, αH) equal to (1, 1), when p values is 6, 

percent increase in transportation costs for p0=2, 3, 4 and5 was 

6.3%, 5%, 1.8% and 0.7%, respectively. When p =7, percent 

increase in transportation costs for p0=2, 3, 4, 5 and6 was 8.8%, 

6.1%, 3.7%, 3% and 1.2%, respectively.  
For instances with (αC, αH) equal to (0.8, 0.9), when p values 

are 6, percent increase in transportation costs for p0=2, 3, 4 and5 
was 11%, 7.9%, 4.6% and 2.4%, respectively. When p values are 

7, percent increase in transportation costs for p0=2, 3, 4, 5 and 6 
was 14.5%, 10%, 6.6%, 4.4% and 1.9%, respectively. 

Table 4. The results on the CAB data set with 25 cities for SAOF-HHMN 

problem 

For instances with (αC, αH) equal to (0.7, 0.8), when p values 

are 6, percent increase in transportation costs for p0=2, 3, 4 and5 

was 12.3%, 7.7%, 4.7% and 2.5%, respectively. When p values 

are 7, percent increase in transportation costs for p0=2, 3, 4, 5 
and6 was 15.1%, 10%, 7.1%, 4.9% and 2.2%, respectively.  

The Contents presented above, we can conclude that the 

percentage of increase in the transportation costs is higher for 

instances with lower values of discount factors.  
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(1,1) 3 2 163 829880 0.7 
(1,1) 3 3 147 823940 0.0 
(1,1) 4 2 315 829020 3.9 
(1,1) 4 3 148 816050 2.2 
(1,1) 4 4 141 798230 0.0 
(1,1) 5 2 171 812380 4.7 
(1,1) 5 3 152 799470 3.0 
(1,1) 5 4 101 786950 1.4 
(1,1) 5 5 85 776150 0.0 
(1,1) 6 2 281 810060 6.3 
(1,1) 6 3 221 800140 5.0 
(1,1) 6 4 190 776390 1.8 
(1,1) 6 5 132 767680 0.7 
(1,1) 6 6 114 762400 0.0 
(1,1) 7 2 362 813140 8.8 
(1,1) 7 3 342 793070 6.1 
(1,1) 7 4 223 775090 3.7 
(1,1) 7 5 201 770180 3.0 
(1,1) 7 6 178 756740 1.2 
(1,1) 7 7 160 747620 0.0 

(0.8,0.9) 3 2 85 786680 2.1 
(0.8,0.9) 3 3 160 770330 0.0 
(0.8,0.9) 4 2 278 775900 6.4 
(0.8,0.9) 4 3 190 750110 2.8 
(0.8,0.9) 4 4 127 729560 0.0 
(0.8,0.9) 5 2 201 769840 9.5 
(0.8,0.9) 5 3 190 741400 5.4 
(0.8,0.9) 5 4 75 721570 2.6 
(0.8,0.9) 5 5 64 703280 0.0 
(0.8,0.9) 6 2 265 757850 11.0 

(0.8,0.9) 6 3 237 736950 7.9 
(0.8,0.9) 6 4 185 714500 4.6 

(0.8,0.9) 6 5 165 699240 2.4 
(0.8,0.9) 6 6 92 682950 0.0 
(0.8,0.9) 7 2 357 761550 14.5 
(0.8,0.9) 7 3 288 731890 10.0 
(0.8,0.9) 7 4 200 709590 6.6 
(0.8,0.9) 7 5 167 694940 4.4 
(0.8,0.9) 7 6 147 678030 1.9 
(0.8,0.9) 7 7 135 665350 0.0 
(0.7,0.8) 3 2 134 755440 2.5 
(0.7,0.8) 3 3 128 737290 0.0 
(0.7,0.8) 4 2 328 736690 5.8 
(0.7,0.8) 4 3 197 715600 2.8 
(0.7,0.8) 4 4 161 696310 0.0 
(0.7,0.8) 5 2 213 728020 9.5 
(0.7,0.8) 5 3 165 699560 5.2 
(0.7,0.8) 5 4 78 681520 2.5 
(0.7,0.8) 5 5 62 664750 0.0 
(0.7,0.8) 6 2 269 720560 12.3 
(0.7,0.8) 6 3 205 691500 7.7 
(0.7,0.8) 6 4 178 671680 4.7 
(0.7,0.8) 6 5 141 657960 2.5 
(0.7,0.8) 6 6 102 641790 0.0 
(0.7,0.8) 7 2 336 711390 15.1 
(0.7,0.8) 7 3 324 680100 10.0 
(0.7,0.8) 7 4 255 662510 7.1 
(0.7,0.8) 7 5 201 648780 4.9 
(0.7,0.8) 7 6 181 632080 2.2 
(0.7,0.8) 7 7 174 618310 0.0 
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Actually, the percentage of increase in the transportation costs 
for p0 = p-1 are very close, but there is a huge difference when p0 

= 2. For example, when p=7 and p0=6, the percentage increases 

are 1.2%, 1.9%, and 2.2% for (αC ,αH) equal to (1, 1), (0.8, 0.9), 

and (0.7, 0.8), respectively. When p=7 and p0=2, the percentage 
increases are 8.8%, 14.5%, and 15.1% for (αC ,αH) equal to (1, 1), 

(0.8, 0.9) and          (0.7, 0.8), respectively. 

Due to the triangle inequality, traveling between these two 

hubs by passing through a central hub cannot be shorter than 
traveling directly. Also, the distances between two hubs and a 

central hub are reduced by the factor αH in the star central hub 

network whereas the distances between two central hubs are 

reduced by the factor αC in the complete central hub network.  

3.3.7. Effect of the number of central hubs and 

discount factors on the locations of central 

hubs 

In this experiment, we would like to observe the effect of the 

number of central hubs and discount factors on the locations of 
central hubs. For this, we use the CAB data with n = 25; p = 

{3,4,5,6,7} ; p0={2,3,4,5,6,7} and different discount factors. In 

Table 5, we report the locations of hubs and central hubs in the 

optimal solutions for these instances.  
Looking at the locations of the hub nodes in Table 5, we 

observe that Denver (8) is always selected as a central hub node 

or hub node. St. Louis (21) is usually selected as a central hub 

node or hub node. 
To see the effect of decreasing the value of the discount factor 

for the transportation cost among central hubs, we compare the 

results for the instances with (αC ,αH) equal to (1, 1), (0.8, 0.9), 

and (0.7, 0.8). 
When p=5 and p0 =4, for (αC ,αH) equal to (0.8, 0.9), and (0.7, 

0.8) the central hubs remain the same Denver (8), Memphis (13), 

Pittsburgh (20) and St. Louis (21). For (αC ,αH) equal to (1, 1), 

Cincinnati (5) instead of Pittsburgh (20)  selected as a central hub 
node. 

Also, the common cities in all values of discount factors are: 

Cincinnati (5), Cleveland (6), Denver (8), Memphis (13), 

Pittsburgh (20), St. Louis (21), Tampa (24) and Washington (25). 
Thus, as mentioned above, we understand that the location of 

cities in United States are very important. 

In Fig. 14, we give the United States map with the 25 cities and 

illustrate a sample of solutions on the CAB data set. In order to 
analyze the flow behavior of the designed network links. We use 

green color to represent the central hubs and orange color to 

represent the hubs. We explored the flow data with (αC ,αH) equal 

to (1, 1), p=5 and p0=3 corresponding to instances (a) of Fig. 14 
and also for the rest of the samples have been determined. 

We observe in Fig. 14, when that flow is not important or in 

other words, all cities are considered to be identical, Cincinnati 

(5), Denver (8), Memphis (13) and St. Louis (21) are good 
location for central hubs. 

 

 

 
 

 

 

 

Table 5. The results on the CAB data set with 25 cities for SAOF-HHMN 

problem 

(αC,αH) p P0  Hub locations Central Hub locations 
(1,1) 3 2 5,8,21 8,21 
(1,1) 3 3 5,8,13 5,8,13 
(1,1) 4 2 1,8,20,21 1,21 
(1,1) 4 3 5,8,13,20 5,8,13 
(1,1) 4 4 8,13,20,21 8,13,20,21 
(1,1) 5 2 5,8,13,21,25 5,21 
(1,1) 5 3 5,8,13,21,25 5,13,21 
(1,1) 5 4 5,8,13,20,21 5,8,13,21 
(1,1) 5 5 1,8,13,20,21 1,8,13,20,21 
(1,1) 6 2 1,5,8,13,20,21 5,21 
(1,1) 6 3 5,8,11,13,20,24 5,11,13 

(1,1) 6 4 1,5,8,13,20,21 1,5,13,21 
(1,1) 6 5 1,5,8,13,20,21 1,5,8,13,21 
(1,1) 6 6 1,6,8,13,21,25 1,6,8,13,21,25 

(1,1) 7 2 1,5,8,13,20,21,25 5,21 
(1,1) 7 3 1,5,8,13,20,21,24 1,5,21 
(1,1) 7 4 1,5,8,13,21,24,25 1,5,13,21 
(1,1) 7 5 1,4,5,8,11,13,20 1,4,5,11,13 
(1,1) 7 6 1,5,8,13,18,21,25 1,5,8,13,21,25 
(1,1) 7 7 1,4,5,8,13,21,25 1,4,5,8,13,21,25 

(0.8,0.9) 3 2 8,20,21 20,21 
(0.8,0.9) 3 3 6,8,21 6,8,21 
(0.8,0.9) 4 2 6,8,21,24 8,21 
(0.8,0.9) 4 3 5,8,13,25 5,8,13 

(0.8,0.9) 4 4 1,8,20,21 1,8,20,21 
(0.8,0.9) 5 2 8,20,21,23,24 8,21 
(0.8,0.9) 5 3 5,8,13,24,25 5,8,13 

(0.8,0.9) 5 4 8,13,20,21,24 8,13,20,21 

(0.8,0.9) 5 5 8,13,20,21,24 8,13,20,21,24 
(0.8,0.9) 6 2 5,8,13,21,24,25 5,21 

(0.8,0.9) 6 3 2,5,8,13,22,24 5,8,13 
(0.8,0.9) 6 4 5,8,13,21,24,25 5,8,13,21 
(0.8,0.9) 6 5 5,8,13,21,24,25 5,8,13,21,24 
(0.8,0.9) 6 6 2,5,8,13,21,24 2,5,8,13,21,24 
(0.8,0.9) 7 2 8,13,20,21,22,23,24 8,21 
(0.8,0.9) 7 3 5,8,13,22,23,24,25 5,8,13 
(0.8,0.9) 7 4 5,8,13,21,23,24,25 5,8,13,21 
(0.8,0.9) 7 5 1,8,13,20,21,22,23 1,8,13,20,21 
(0.8,0.9) 7 6 2,5,8,13,21,23,24 2,5,8,13,21,24 
(0.8,0.9) 7 7 2,5,8,13,19,21,24 2,5,8,13,19,21,24 
(0.7,0.8) 3 2 8,20,21 8,21 

(0.7,0.8) 3 3 6,8,13 6,8,13 
(0.7,0.8) 4 2 8,20,21,24 20,21 
(0.7,0.8) 4 3 2,5,8,13 5,8,13 

(0.7,0.8) 4 4 8,13,20,21 8,13,20,21 
(0.7,0.8) 5 2 2,5,8,21,24 5,21 
(0.7,0.8) 5 3 5,8,13,24,25 5,8,13 
(0.7,0.8) 5 4 8,13,20,21,24 8,13,20,21 
(0.7,0.8) 5 5 8,13,20,21,24 8,13,20,21,24 
(0.7,0.8) 6 2 2,5,8,13,23,24 5,8 
(0.7,0.8) 6 3 2,5,8,13,23,24 5,8,13 
(0.7,0.8) 6 4 8,13,20,21,23,24 8,13,20,21 
(0.7,0.8) 6 5 2,5,8,13,23,24 2,5,8,13,24 
(0.7,0.8) 6 6 8,13,19,20,21,24 8,13,19,20,21,24 
(0.7,0.8) 7 2 2,5,8,13,22,23,24 5,8 
(0.7,0.8) 7 3 2,5,8,13,22,23,24 5,8,13 
(0.7,0.8) 7 4 8,13,20,21,22,23,24 8,13,20,21 
(0.7,0.8) 7 5 2,5,8,13,22,23,24 2,5,8,13,24 
(0.7,0.8) 7 6 2,6,8,13,21,22,24 2,6,8,13,21,24 
(0.7,0.8) 7 7 2,6,8,13,19,21,24 2,6,8,13,19,21,24 
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Fig. 14. CAB data set results with 25 cities for SAOF-HHMN problem 

4.3. SAOF-IHHMN problem 

We tested the performance of our SAOF-IHHMN model on 
CAB data with 25 cities. 

For the CAB data set with 25 cities, p ranging from 3 to 7 and 

p0 ranging from 2 to 5, so we tested differing q values for our 

incomplete hierarchical p-hub median network design 
formulation. We took αC and αH values to be 1, 0.9, 0.8 and 0.7. 

Table 6. The results on the CAB data set with 25 cities for SAOF-IHHMN 

problem 

(αC,αH) p P0  q 
CPU 
Time 

(s) 

Hub locations Central Hub 
locations GAP 

% 
Increase 

in 

transporta
tion costs 

(1,1) 3 2 1 6 11,20,22 11,20 0 0.0 
(1,1) 5 3 2 795 1,5,11,20,25 5,11,20 0 1.9 
(1,1) 5 3 3 54 1,2,11,13,20 11,13,20 0 0.0 
(1,1) 6 4 4 > 2100 4,5,7,11,13,21 5,11,13,21 7.4 1.3 
(1,1) 6 4 5 763 4,5,10,11,13,21 5,11,13,21 0 0.1 
(1,1) 6 4 6 298 1,3,5,11,13,21 5,11,13,21 0 0.0 
(1,1) 7 5 7 > 2100 3,4,5,6,11,14,21 4,5,6,11,21 10.1 3.3 
(1,1) 7 5 8 > 2100 5,6,9,14,20,21,23 5,6,9,20,21 5.2 0.4 
(1,1) 7 5 9 405 5,6,9,10,20,21,24 5,6,9,20,21 0 0.1 
(1,1) 7 5 10 291 3,5,6,9,14,20,21 5,6,9,20,21 0 0.0 

(0.9,0.9) 3 2 1 5 11,19,20 11,20 0 0.0 
(0.9,0.9) 5 3 2 1331 5,11,19,20,22 5,11,20 0 2.3 
(0.9,0.9) 5 3 3 56 11,13,19,20,22 11,13,20 0 0.0 
(0.9,0.9) 6 4 4 > 2100 6,11,13,19,21,22 6,11,13,21 9.9 1.6 
(0.9,0.9) 6 4 5 924 5,11,13,19,21,22 5,11,13,21 0 0.1 
(0.9,0.9) 6 4 6 339 11,13,19,20,21,19 11,13,20,21 0 0.0 
(0.9,0.9) 7 5 7 > 2100 5,6,9,19,20,21,22 5,6,9,20,21 9 0.5 
(0.9,0.9) 7 5 8 > 2100 5,6,9,14,20,21,23 5,6,9,20,21 7.4 0.5 
(0.9,0.9) 7 5 9 474 5,6,9,19,20,21,22 5,6,9,20,21 0 0.1 
(0.9,0.9) 7 5 10 228 5,6,9,19,20,21,22 5,6,9,20,21 0 0.0 
(0.8,0.9) 3 2 1 5 11,19,20 11,20 0 0.0 
(0.8,0.9) 5 3 2 1007 8,20,21,23,24 8,20,21 0 2.3 
(0.8,0.9) 5 3 3 98 6,8,13,23,24 6,8,13 0 0.0 
(0.8,0.9) 6 4 4 > 2100 11,13,19,20,21,22 11,13,20,21 8.7 1.2 
(0.8,0.9) 6 4 5 727 11,13,19,20,21,22 11,13,20,21 0 0.1 
(0.8,0.9) 6 4 6 394 11,13,19,20,21,22 11,13,20,21 0 0.0 
(0.8,0.9) 7 5 7 > 2100 4,5,6,11,19,21,22 4,5,6,11,21 11.8 1.6 
(0.8,0.9) 7 5 8 > 2100 5,6,9,19,20,21,22 5,6,9,20,21 3.8 0.1 
(0.8,0.9) 7 5 9 727 5,6,9,19,20,21,22 5,6,9,20,21 0 0.1 
(0.8,0.9) 7 5 10 364 5,6,9,19,20,21,22 5,6,9,20,21 0 0.0 
(0.7,0.8) 3 2 1 7 11,19,20 11,20 0 0.0 
(0.7,0.8) 5 3 2 1149 8,20,21,23,24 8,20,21 0 2.2 
(0.7,0.8) 5 3 3 52 6,8,13,23,24 6,8,13 0 0.0 
(0.7,0.8) 6 4 4 > 2100 11,13,19,20,21,23 11,13,20,21 4.8 1.1 
(0.7,0.8) 6 4 5 948 11,13,19,20,21,23 11,13,20,21 0 0.1 
(0.7,0.8) 6 4 6 413 11,13,19,20,21,23 11,13,20,21 0 0.0 
(0.7,0.8) 7 5 7 > 2100 5,6,11,13,19,21,23 5,6,11,13,21 14.4 0.9 
(0.7,0.8) 7 5 8 > 2100 5,11,13,19,20,21,23 5,11,13,20,21 8.1 0.3 
(0.7,0.8) 7 5 9 817 5,6,9,19,20,21,23 5,6,9,20,21 0 0.1 
(0.7,0.8) 7 5 10 362 5,6,9,19,20,21,23 5,6,9,20,21 0 0.0 

We report our results on the CAB data set with 25 cities in 
Table 6. For each instance, Table 6 reports the required CPU 

time in seconds, the locations of the hub nodes, the locations of 

the central hub nodes, gap and increase in transportation costs. 

For each instance with gap equal to zero, on the average the 
model is solved within 465.68 s (7min and 45.68s) of CPU time. 

The minimum CPU time requirement was about 5 s for the 

instances with p=3, p0=2 and q=1, whereas the maximum was 

about 1331 s (22min and 11s) for the instances with p=5, p0=3, 
q=2 and (αC ,αH) equal to (0.9, 0.9).  

 The time was limited to 2100 sec (35min) of CPU. Values 

‘‘>2100’’ of column Time means that CPLEX requires more 

than 2100 sec of CPU time to solve each of the 12 instances for 
the corresponding combination of parameters. In these cases, 

column GAP reports the gap at the stopping time. 

In Table 6, we observe that in problem definitions where we 

located three central hub nodes, the locations of central hub 
nodes for (αC ,αH) equal to (1, 1) and (0.9, 0.9) are identical. Also 

for (αC ,αH) equal to (0.8, 0.9) and (0.7, 0.8) are identical. At the 

instances where we located four central hub nodes, Kansas City 

(11), Memphis (13) and St. Louis (21) are always selected as 
central hub nodes. If (αC ,αH) equal to (1, 1), Cincinnati (5) is 

selected as a central hub node and if (αC ,αH) equal to (0.8, 0.9) 

and (0.7, 0.8), Memphis (13) is selected as a central hub node. At 

the instances where we located five central hub nodes, Cincinnati 
(5), Cleveland (6) and St. Louis (21) are always selected as 

central hub nodes.  

In Table 6, we observe that for the instances with (p=6, p0=4, 

q=4), (p=7, p0=5, q=7), (p=7, p0=5, q=8) and different values of 
discount factors, values of gap are nonzero. 

 The highest gap at the CAB instances in Table 6 was 14.4% 

for instance with p=7, p0=5, q=7 and (αC, αH) equal to (0.7, 

0.8). Also, the lowest gap in Table 6 was 3.8% for instance with 

p=7, p0=5, q=8 and (αC, αH) equal to (0.8, 0.9).  

The percentage of increase in transportation costs is reported as 
zero for the instances with complete central hub networks. The 

highest increase we obtained at the CAB instances in Table 6 

was 3.3% for instance with p=7, p0=5, q=7 and (αC, αH) equal 

to (1, 1). We also observed from Table 6 that the percentage of 

increase in the transportation costs is higher for instances with 
lowest number of established central hub links (q). 

In Fig. 15 and Fig. 16, we observe the increase in 

transportation costs with respect to the number of established 

central hub links; we decided to draw the curve and analyzed the 
instance with different values of discount factors, p = 6,7 and 

p0=4,5 and different values of central hub links. Fig. 15 and Fig. 

16 depicts the resulting the curve. 
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Fig. 15. The increase in transportation costs for CAB data with 25 nodes, 6 hubs 

and 4 central hubs. 

In Fig. 15, when we forced the model to establish with four 

central hub links increasing in transportation costs was about 

1.1% - 1.6% and in Fig. 16 with seven central hub links 

increasing in transportation costs was about 0.6% - 3.3%. This 

value was about 0.1% when we reduced one central hub link 
from the complete central hub network. In Fig. 15 and Fig. 16, 

we can see there is a steep increase in the curve below q = 5 and 

q=8, respectively. 

 

 

 Fig. 16. The increase in transportation costs for CAB data with 25 nodes, 7 hubs 

and 5 central hubs. 

In Fig. 17, we give the United States map with the 25 cities and 

illustrate a sample of solutions on the CAB data set. In order to 

analyze the flow behavior of the designed network links. We use 

green color to represent the central hubs and orange color to 

represent the hubs. We explored the flow data with (αC ,αH) equal 
to (1, 1), p=5 and p0=3 corresponding to instances (a) of Fig. 17 

and also for the rest of the samples have been determined.  

We observe in Fig. 17, when the flow is not important or in 

other words, all cities are considered to be identical, Cincinnati 
(5), Kansas City (11), Memphis (13) and St. Louis (21) are good 

location for central hubs. 

Now we compare the results SAOF-IHHMN model and SA-

IHHMN model in Table 7. We show the difference on location 
of central hubs when between nodes is flow and is not flow. 

 

Fig. 17. CAB data set results with 25 cities for SAOF-IHHMN problem 

Table 7. Compare the results SAOF-IHHMN problem and SA-IHHMN problem 

(αC,αH) P0  q 
Central Hub 

locations for SA-

IHHMN 

Central Hub 
locations for 

SAOF-

IHHMN 
(1,1) 2 1 4,8 11,20 
(1,1) 3 2 4,13,20 5,11,20 
(1,1) 3 3 1,4,20 11,13,20 
(1,1) 4 4 4,8,13,25 5,11,13,21 
(1,1) 4 5 1,4,8,25 5,11,13,21 
(1,1) 4 6 1,4,13,20 5,11,13,21 
(1,1) 5 7 1,4,7,8,20 4,5,6,11,21 
(1,1) 5 8 1,4,7,8,20 5,6,9,20,21 
(1,1) 5 9 1,4,7,8,20 5,6,9,20,21 
(1,1) 5 10 1,4,7,8,20 5,6,9,20,21 

(0.9,0.9) 2 1 2,4 11,20 
(0.9,0.9) 3 2 1,4,20 5,11,20 
(0.9,0.9) 3 3 1,4,20 11,13,20 
(0.9,0.9) 4 4 4,7,8,20 6,11,13,21 
(0.9,0.9) 4 5 4,7,8,20 5,11,13,21 
(0.9,0.9) 4 6 1,4,11,20 11,13,20,21 
(0.9,0.9) 5 7 1,4,7,8,20 5,6,9,20,21 
(0.9,0.9) 5 8 1,4,7,8,20 5,6,9,20,21 
(0.9,0.9) 5 9 1,4,7,8,20 5,6,9,20,21 
(0.9,0.9) 5 10 1,4,7,8,20 5,6,9,20,21 
(0.8,0.9) 2 1 4,25 11,20 
(0.8,0.9) 3 2 12,20,21 8,20,21 
(0.8,0.9) 3 3 5,7,12 6,8,13 
(0.8,0.9) 4 4 1,4,7,20 11,13,20,21 
(0.8,0.9) 4 5 4,7,12,20 11,13,20,21 
(0.8,0.9) 4 6 4,7,12,20 11,13,20,21 
(0.8,0.9) 5 7 1,4,7,12,20 4,5,6,11,21 
(0.8,0.9) 5 8 1,4,7,12,20 5,6,9,20,21 
(0.8,0.9) 5 9 1,4,7,12,20 5,6,9,20,21 
(0.8,0.9) 5 10 1,4,7,12,20 5,6,9,20,21 

5. Conclusion 

In this paper, we introduced an incomplete hierarchical hub 

median network problem with single assignment and presented a 

mixed integer programming model to solve it. 

We also introduced a special new kind of hierarchical hub 
median network problem where transportation cost is only 

dependent on the distance and presented two mixed integer 

programming models for complete and incomplete network 

environment. 
Computational analyses with these formulations on the CAB 

data set are also presented. The problems have come from real-

life observations of many central hub networks.  

The aim of this paper is providing a thorough treatment of the 
existing central hub location problems under the incomplete 

central hub network structure. In this study, we show the 

percentage of increase in transportation costs has directly 
proportional with values of discount factors. This means that the 
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percentage of increase in the transportation costs decreases when 
values of discount factors decrease. 

Also, the percentage of increase in transportation costs has 

inversely proportional with number of established central hub 

links. 
In each instance having a smaller number of established central 

hub links means that the Gap will be greater and the solution 

time will also be greater. The reason for this is that having a 

smaller number of established central hub links means that the 
solution space will be wider. 

In each instance when the difference between number of 

central hubs and hubs is smaller, the problem will solve faster 

since the solution space is getting smaller.  
In general, the bigger difference between these two factors will 

increase the solution time and the Gap, we can see from the 

tables that all instances with great difference take more time to 

solve. 
The increase in the total transportation costs with respect to 

building complete central hub networks is not very significant. If 

the decision maker considers the fixed costs of building central 

hub links, this increase in transportation costs can be tolerable. 
In face the decision maker has to choose among more cases 

when using an incomplete setting for the network instead of 

complete setting. 

In real world problems using complete networks are heavily 
costly. 

We can see the influence on location of central hubs and hub 

when there is no flow among nodes. In fact, when there is no 

flow among nodes then the nodes are equally preferred. 
Therefore, the only factor to choose the hubs and central hubs is 

the location of nodes and their distances to other nodes. 

In general, within CPU time we have reached the optimal 

solution and Sub-optimal solution. 
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