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1. Introduction  

There are numerous optimization problems in the area of 

financial engineering like time series prediction, index-

tracking, credit scoring, etc., but one of the most famous 

problems is the portfolio selection problem (PSP). In its initial 

formulation, PSP is associated with choosing a portfolio of 

assets, which minimizes the risk subject to some constraints 

such as budget or cardinality constraints. This framework 

captures the risk-return tradeoff between a single linear return 

measure and a single convex nonlinear risk measure.  In 

practice, investors prefer to invest in portfolios, pools of funds, 

rather than single assets (or securities). They also prefer to 

have no short selling on their assets to reduce the extent of 

unlimited risk. Short selling is common trading to sell assets 

that are not owned by the investor at the time, in expectation 

of a price decrease. Another arising issue is to have a well-

diversified portfolio to reduce the non-systematic risk in the 

portfolio[1]. In this paper, we deal with the so-called mean-

variance portfolio selection, formulated in the original work of 

Markowitz [2]. There are varieties of Markowitz problem 

formulation such as mean-absolute deviation (MAD) and 

semi-variance, etc. Konno and Yamazaki [3] proposed a linear 

programming model where returns are normally distributed 

multivariate. A piecewise linear approximation, weighted goal 

programming [4], and mini-max model [5] are the additional 

instances of these models. Some researchers added more 

practical considerations such as transaction costs [6], liquidity 

[7], buy-in threshold [8], cardinality, turnover, and trading [9], 

The Portfolio Selection Problem is one of the most widely studied topics in the finance and economics 

area. Many portfolio optimization problems are formulated as a complex mathematical model where 

direct optimal solutions cannot be obtained in a reasonable amount of time with dependable accuracy. 
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etc. to Markowitz's basic model to make it more realistic. 

However, adding constraints to the portfolio optimization 

problem make it quite intractable even for small cases. 

Di Tollo and Roli [10] provided an overview of the literature 

on the application of metaheuristics to the PSP, which consists 

of simulated annealing (SA) [9], threshold accepting (TA) [11, 

12], tabu search (TS) [13], genetic algorithm (GA) [14, 15]and 

ant colony optimization (ACO) [14, 16]. Chang et al.[17] 

proposed GA, SA, and TS for cardinality-constrained PSP. 

Fernandez and Gomez[18] proposed an algorithm based on an 

artificial neural network (NN). Similarly, Cura [19] proposed 

particle swarm optimization (PSO) to solve portfolio 

optimization. Tilahuan and Ngnotchouye [20] devoted their 

endeavor to the detailed review of the modifications done on 

the firefly algorithm to solve optimization problems with 

discrete variables. Heidari and Neshatizadeh [21] show that 

Firefly Algorithm (FA) and Imperialist Competitive 

Algorithm (ICA) showed successful function in constrained 

optimization of stock portfolio and have acceptable accuracy 

in finding optimal answers in the whole risk and returns levels. 

Wang [22] proposes an improved firefly algorithm that is 

called DFA algorithm and focuses on the application of DFA 

to the portfolio optimization problem. The experimental 

results show that the DFA algorithm is more efficient than a 

genetic algorithm, particle swarm optimization algorithm, 

differential evolution algorithm and firefly algorithm, and it 

has higher convergence precision and faster convergence 

speed. Lazulfa [23] proposed multi-objective portfolio 

optimization model with risk, return as the objective function. 

For multi-objective portfolio optimization problems will be 

used mean-variance model as risk measures. All these 

portfolio optimization problems will be solved by Firefly 

Algorithm (FA). Sedighi et al [24] discover that SPEA-

ANFIS-APT forecasting technique considerably performs 

better than the other portfolio optimization models. They 

suggested hybrid optimization approach provides considerable 

enhancements and also innovation in the portfolio 

management and investment strategies under unpredictable 

and uncertain stock exchange without human interference, 

with a diversification procedure, thereby supplying 

satisfactory and ideal returns with minimum risk. Gharakhani 

et al [25] suggested Index tracking is an investment approach 

where the primary objective is to keep portfolio return as close 

as possible to a target index without purchasing all index 

components. The main purpose is to minimize the tracking 

error between the returns of the selected portfolio and a 

benchmark. In this study, quadratic as well as linear models 

are presented for minimizing the tracking error. The 

performance of the proposed models is evaluated using several 

financial criteria e.g., information ratio, market ratio, Sharpe 

ratio and Treynor ratio. The preliminary results demonstrate 

that the proposed model lowers the amount of tracking error 

while raising the values of portfolio performance measures. 

Firefly Algorithm (FA) is a new metaheuristic method for 

multimodal optimization applications introduced recently by 

Yang [26]. This algorithm seems to be more promising than PSO; 

since it deals with multimodal functions more naturally and 

efficiently and PSO is just a special class of the firefly algorithms 

[26]. Bacanin and Tuba [29] introduced a modified firefly 

algorithm (FA) for the CCMV portfolio model with entropy 

constraint. They reported some deficiencies when applied to 

constrained problems. To overcome the lack of exploration 

power during early iterations, they modified the algorithm and 

tested it on standard portfolio benchmark data sets. Their 

proposed modified firefly algorithm proved to be better than 

other state-of-the-art algorithms, while the introduction of 

entropy diversity constraint further improved results. 

Strumberger et al [30] performed testing of the original firefly 

algorithm on a set of standard 13 benchmark functions for 

constrained problems and it exhibited certain deficiencies, 

primarily insufficient exploration during an early stage of the 

search. They proposed enhanced firefly algorithm where main 

improvements are correlated to the hybridization with the 

exploration mechanism from another swarm intelligence 

algorithm, the introduction of a new exploitation mechanism, and 

parameter-based tuning of the exploration-exploitation balance. 

They tested their approach on the same standard benchmark 

functions and showed that it not only overcame weaknesses of 

the original firefly algorithm but also outperformed other state-

of-the-art swarm intelligence algorithms. 

There are a few studies on FA in the literature, and nearly 

none of them deals with the portfolio selection problems. 

Therefore, in This study, we applied the firefly algorithm as a 

new metaheuristic to solve the Markowitz mean-variance 

model with cardinality constraints. However, the standard 

model does not consider any bounding or cardinality 

constraints where the investor restricts the upper/lower bounds 

of the proportion of each asset in the portfolio and the number 

of assets, respectively.   

The benchmark data set is the weekly prices from March 

1992 to September 1997 including stocks involved in the 

following capital market indices: HangSeng (Hong Kong), 

DAX 100 (Germany), FTSE 100 (UK), S&P 100 (USA), and 

Nikkei (Japan). The number of assets for each of the test 

problems is 31, 85, 89, 98, and 225, respectively. The reason 

behind using this dataset is firstly its popularity among 

researcher, secondly using a well-known data set, which is 

widely used by other researchers, we can compare our results 

with other algorithms and one can compare her results with 

ours in the future. The rest of this paper is organized as 

follows. Section 2 describes the modeling of the portfolio 

selection problem with cardinality constraints. The FA 

algorithm is proposed to solve the cardinality constrained 

portfolio selection problem. Section 3 contains computational 

experiments with real-world data sets. Over and beyond the 

discussed material, the computational results of this paper are 

compared with other methods, statistically. Finally, Section 4 

highlights the concluding remarks. 

2. Research Method 

In the basic portfolio optimization form, we are looking for a 

portfolio, which minimizes the risk at given levels of return rate. 

In the Markowitz formulation, the risk measure is defined by the 

variance of the portfolio. The Markowitz model is as follows [2]: 
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Where N is the number of available assets and 𝑥𝑖 is the 

proportion (0 ≤ 𝑥𝑖 ≤ 1) of the entire wealth held in asset i. 

𝑟𝑖 is the mean return of asset i; 𝜎𝑖𝑗 is the covariance of 

expected returns on assets i and j. The objective function is the 

total variance (risk) associated with the portfolio σ𝑝
2 , given by 

∑ ∑ 𝜎𝑖𝑗𝑥𝑖
𝑁
𝑗=1

𝑁
𝑖=1 𝑥𝑗 . The portfolio return is represented by a 

random variable and the expected return is given by 

∑ 𝑟𝑖
𝑁
𝑖=1 𝑥𝑖, whilst  𝑟𝑝 represents the desired mean return of 

the portfolio. Constraint (3) ensures that the proportions add to 

1, as they are considered as fractions of the whole amount of 

money to be invested.   

Alternatively, we could find different possible portfolios by 

defining a risk aversion parameter 𝜆 ∈ [0,1]. With this new 

parameter, the model can be described as: 
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                           .0ix  i =1, 2, …, N (7) 

 

In the above model, constraint (2) in the primary model is 

added to the objective function. This model assumes that an 

investor would always try to secure his investments from a 

possible loss while simultaneously trying to maximize the 

return of his investments.  

In Eq. (5) the case 𝜆 = 0 represents the maximization of 

the expected return, and the optimal solution will involve just the 

single asset with the highest return. Vice versa, the case 𝜆 = 1 

represents the minimization of the risk, and the optimal solution 

will typically involve some assets. Other 𝜆 values (0 < 𝜆 < 1) 

represent an obvious trade-off between return and risk, generating 

solutions between the two extreme points 𝜆 = 0 and 𝜆 = 1.   

This problem is an instance of the family of multi-objective 

optimization problems. Usually, a multi-objective optimization 

problem has several different optimal solutions. The objective 

function values of all these non-dominated solutions constitute 

what is called the efficient frontier. By solving the PSP 

iteratively for a set of  𝜆 values, it is possible to trace the 

efficient frontier for the Markowitz unconstrained problem 

(referred to as UEF) [2]. Whereas every point on an efficient 

frontier curve indicates an optimum and the investor can then 

choose the portfolio depending on particular risk or return 

demands. The UEF is composed of Pareto optimal solution, 

i.e., solutions such that no criterion can be improved without 

deteriorating any other criterion.  

For the problem defined in Eqs. (5)- (7), the efficient frontier 

is a curve that gives the best trade-off between mean return and 

risk. Fig. 1 shows an instance of an efficient frontier curve for 

the biggest benchmark problem (Nikkei). This efficient 

frontier is called standard efficient frontier and it has 

been calculatedfor2000 different 𝜆 values. 

 

 

Fig. 1. Standard Efficient Frontier Corresponding to 

 

There are two important constraints in our PSP model in 

addition to those of the original model.  First, the number of 

assets in the portfolio is often either limited to a given value, 

or it is bounded. By introducing a binary variable 𝑧𝑖 we can 

extend our formulation to the cardinality constrained case, 𝑧𝑖 

which is equal to 1 if the asset i is in the portfolio and 0 

otherwise. The constraint can be expressed as follows:  
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This constraint is imposed to simplify portfolio management 

and to reduce its management costs [10].  

Second, the proportion of the asset i must be in the range 

with the lower, and the upper bounds (휀𝑖 and 𝛿𝑖 respectively) 

allowed being held for each asset in the portfolio. In other 

words, the portion of the portfolio for a specific asset must 

range in a given interval:  

 

                           
,iiiii zxz  
 

(9) 

 

Where 0 ≤ 휀𝑖 ≤ 𝛿𝑖 ≤ 1 (i=1, 2,…, N). In practice 

휀𝑖 represents a "min-buy" or "minimum transaction level" for 

asset i and 𝛿𝑖 limits the exposure of the portfolio to 

asset i [17]   

Thus, the cardinality constraints PSP model is: 
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                         휀𝑖𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝛿𝑖𝑧𝑖  i =1, 2, …, N (13) 

 

                         𝑧𝑖 ∈ {0,1}. i =1, 2, …, N (14) 

 

In the presence of cardinality and bounding constraints the 

resulting efficient frontier called general efficient frontier, can 

be quite different from the one obtained with the standard 

mean-variance model. In particular, the general efficient 

frontier may be discontinuous and the traditional quadratic 

programming approach to portfolio optimization is difficult to 

implement [27].  

FA Approach for Solving Cardinality Constrained  

Portfolio Selection Problem 

The formulation in Eqs. (10)-(14) is a mixed quadratic and 

integer programming problem for which efficient algorithms 

do not exist [18]. Thus, this study introduces the FA 

optimization method as a new metaheuristic for solving PSP, 

which is one of the latest evolutionary optimization methods.  

Nature-inspired algorithms are among the best algorithms for 

dealing with optimization problems and metaheuristics aim to 

offer strategies based on approximate algorithms for 

combinative optimization problems. In general, metaheuristic-

based algorithms cannot prove the optimality of the returned 

solution, but they are usually very efficient in finding near-

optimal solutions. Some techniques, such as tabu search[13], 

simulatedannealing[9], genetic algorithm[15], and particle 

swarm optimization[19] have proven to be successful in tackling 

real-world problems.  

Firefly Algorithm is one of the latest metaheuristic algorithms 

and is developed by Xin-She Yang [26]. It uses the following 

three idealized rules:   

(1) All fireflies are unisex so that firefly will be attracted to 

other fireflies regardless of their sex;   

(2) Attractiveness is proportional to their brightness; thus for 

any two flashing fireflies, the less bright will move towards 

the brighter one. The attractiveness is proportional to the 

brightness and they both decrease as their distance 

increases. If there is no brighter firefly than a particular one, 

it will move randomly;   

The brightness of a firefly is affected or determined by the 

landscape of the objective function. For the maximization 

problem, the brightness can simply be proportional to the value of 

the objective function. Other forms of brightness can be defined 

in a similar way to the fitness function in a genetic algorithm [26].  

We can consider N dimensions for each firefly where each 

dimension represents an asset. This consideration organizes 

the FA formation in this study with the following form:   

Each firefly includes decision variables denoted by 𝑧𝑓𝑖  

(f = 1, 2,…, F and  i=1, 2,…, N); where F is the number of 

fireflies.  

Each firefly includes proportion variables denoted by 𝑥𝑓𝑖  

(f = 1, 2,…, F and  i=1, 2,…,N).  

Primary Population of Fireflies 

We use a simple probability-based procedure to generate the 

primary population of fireflies in six steps. 

Step1. First, all assets (stocks) are ranked in terms of quality. 

This is done by calculating 𝑣𝑖for all assets as follows: 

 

           

Ni
sdi

ri
vi ,...,2,1

 
(15) 

 

Where 𝑟𝑖 and 𝑠𝑑𝑖are mean return and standard deviation of 

asset i, respectively. Obviously, for higher values of this 

parameter, asset i have a lower standard deviation and higher 

mean return. Therefore this asset has a better quality. 

Step2. The probability function p is calculated using 𝑣𝑖 

values for all assets as follows: 

 
𝑚 = {min 𝑣𝑖        ∀  𝑖 = 1, 2, … , 𝑁} (16) 

            ∆𝑖= 𝑣𝑖 − 𝑚             𝑖 = 1, 2, … , 𝑁 (17) 

            𝑝𝑖 = ∆𝑖 ∑ ∆𝑖
𝑁
𝑖=1⁄ 𝑖 = 1, 2, … , 𝑁 (18) 

 

p values determine the probability of each asset in the 

portfolio. By this definition each asset with a higher 𝑣𝑖 would 

be more probable to be set in the portfolio. To avoid the 

probability of an asset with the lowest v value being zero, we 

consider a fraction of the probability of the next asset that has 

minimal v value as the probability of the worst asset in the 

portfolio. This fraction should be deducted from the initial 

probability value because the sum of probability should remain 

equal to 1.  We set this fraction equal to 1/3. 

Step3. After calculating the probability of each asset, k assets 

are selected using the probability function obtained from the 

former step. The set of k selected assets is shown by Q. In this 

step should be investigated that the set of selected assets are 

capable to be in a portfolio or not. For this purpose ∑ εi∀ i∈Q  and 

∑ δi∀ i∈Q  should be calculated, these summations must be lower 
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than and higher than 1 respectively. With the implementation of 

these procedures, cardinality constraint is satisfied. 

Step4. At this step, the values of z and x are determined as 

follows: 

 
            𝑧𝑖 = 1 ∀𝑖 ∈ 𝑄     𝑎𝑛𝑑     𝑧𝑖 = 0 ∀𝑖 ∉ 𝑄 (19) 

            𝑥𝑖 = 휀𝑖  ∀𝑖 ∈ 𝑄    𝑎𝑛𝑑     𝑥𝑖 = 0 ∀𝑖 ∉ 𝑄 (20) 

 

Thus, the fraction of the total capital allocated to selected 

assets and the remaining part (𝑟 = 1 − ∑ 𝑥𝑖∀ 𝑖∈𝑄 ) will be 

divided between the k selected assets.  

Step5. To allocate the remaining capital, the probability 

function is updated as follows: 

 

𝑝′𝑖 =
𝑝𝑖

∑ 𝑝𝑖∀ 𝑖∈𝑄
⁄     ∀ 𝑖 ∈ 𝑄 (21) 

 

Step6. One of the assets of Q is selected using the probability 

function obtained from the former step (𝑝′) to increase its 

value. To calculate the increase in selected assets a random 

number c is generated uniformly between 0 and the remaining 

amount of total capital (r). Also, the maximum amount that can 

be added to the selected asset is calculated. So the values of xi 

and r are updated as follows: 

 

𝑥𝑖 = 𝑥𝑖 + 𝑚𝑖𝑛{𝛿𝑖 − 𝑥𝑖 ,𝑐} (22) 

𝑟 = 𝑟 − 𝑚𝑖𝑛{𝛿𝑖 − 𝑥𝑖 ,𝑐} (23) 

 

The last step is repeated until total capital is allocated and 

r = 0. This heuristic algorithm is guaranteed to satisfy all 

constraints and feasible solutions are generated. 

Brightness and Attractiveness 

In the firefly algorithm, there are two important issues: the 

variation of light intensity and formulation of attractiveness. 

For simplicity, we can always assume that the attractiveness of 

a firefly is determined by its brightness, which in turn is 

associated with the encoded objective function. For example, 

in the simplest case for maximum optimization problems, the 

brightness i is proportional to the objective function value at a 

particular location x 𝐼(𝑥) ∝ 𝐹(𝑥)) [26].  

The attractiveness is relative and it should be seen in the eyes 

of the beholder or judged by the other fireflies. Thus, it will 

vary with the distance 𝑟𝑝𝑞 between firefly p and firefly q. In 

addition, light intensity decreases with increasing distance 

from its source, and light is also absorbed in the media. For a 

given medium with a fixed light absorption coefficient 𝛾, the 

light intensity i varies with the distance r.   

In this paper, we formulate brightness (light intensity) and 

attractiveness as Eqs. (24) and (25) respectively:  
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Where x𝑓𝑖  is the proportion of the asset i and z𝑓𝑖  is a binary 

variable associated with the asset i in firefly f. z𝑓𝑖 = 1 if asset 

i exist in the firefly f and z𝑓𝑖 = 0  otherwise. β𝑝𝑞(r𝑝𝑞) is the 

attractiveness of firefly p that judged by firefly q with the 

distance r𝑝𝑞 between firefly p and q. 

To determine which fireflies are attracted to a certain firefly, 

their attractiveness should be compared pairwise. If 

β𝑝𝑞(r𝑝𝑞) > β𝑞𝑝(r𝑝𝑞), firefly q is tend to be attracted to p but 

according to the original algorithm each firefly must be 

compared with all previous fireflies, and then it will choose its 

path and be attracted to the most attractive firefly from his view. 

Distance 

The distance between any two fireflies p and q at x𝑝 and x𝑞 , 

is the Cartesian distance:  

 

,)(
1
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(26) 

 

Where x𝑝𝑖  is the ith component of x𝑝.  

Neighborhood Structure 

If firefly q is attracted toward firefly p the values of z𝑞𝑖 and 

x𝑞𝑖  (i=1, 2, ..., N) must be updated. Therefore, we need to 

determine which assets should be in this firefly in its new 

position. In our metaheuristic approach four factors affect this 

decision for asset i:   

Share of the asset i in the light intensity of firefly p (θ𝑝𝑖);   

Share of the asset i in the light intensity of firefly q (θ𝑞𝑖);  

Existence probability of the asset i in fireflies (p𝑖); 

Random term  

The first three factors are calculated as follows respectively:  
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Where I𝑝 is the light intensity of firefly p and u𝑖 is defined 

as follows:  
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Where r𝑖 and sd𝑖 is mean return and standard deviation of 

the asset I respectively.   

Then 𝜉𝑖 is calculated as follows:   

 

),5.0(321  randpiqipii 
 i =1, 2, …, N (31) 

 

Where ω1, ω2 and ω3 are the weights of defined factors, 

which represent the importance of each factor.    

𝜉𝑖 for i=1, 2, ..., N should be sorted in ascending order. 

k assets that have maximum values of 𝜉 are selected to the new 

position of firefly q, then z𝑞𝑖 is set equal to 1 for selected assets 

and 0 for not selected assets. According to this method, 

cardinality constraint is satisfied. It should be noted that if 

firefly q is not attracted to the other fireflies, its assets will 

remain unchanged. 

The advantage of this type of neighborhood structure is to 

investigate the role of each asset in firefly's brightness and its 

ability to change search mechanisms. The first term in 𝜉 is 

calculated theshare of brightness that each asset gives to the target 

firefly p and the second one is calculated theshare of brightness 

that each asset gives to firefly qthat is absorbed to firefly p. The 

third parameter is a chance for assets that do not appear in fireflies 

brightness as well, but they have good quality.And the latter helps 

to improve search mechanisms by randomization. 

Parameters ω1, ω2 and ω3 can determine the type of search. 

For example, if the values of ω1 and ω2 is much more than ω3, 

the randomness of the search is reduced, and diversify of the new 

portfolio (firefly q in his new position) is limited to existing 

assets in two fireflies p and q. Conversely, if the value ω3 is 

much more than ω1 and ω2, the new portfolio is more 

diversified in terms of asset type but convergence speed 

decreases and targeted search mechanism will become to a 

simple random search. Also, change in the values of ω1 and 

ω2 relative to each other can affect the search mechanism. For 

example if ω1 ≫ ω2, the majority of assets in the new position 

of Firefly q are similar to target firefly p. Conversely if 

ω1 ≪ ω2, firefly q tends to remain close to its original position 

and change does not happen a lot on the type of portfolio assets. 

In this case, the speed of moving toward a local optimal solution 

is slower but the search can be done better around these points. 

Movement 

After determining which assets must be in the firefly present 

in the next generation the x𝑞𝑖  (i=1, 2, ..., N) values should be 

updated. The movement of a firefly q is attracted to another 

more attractive (brighter) firefly p is determined by:  

),2/1()(0 


randxxex qipi
rold

qiqi
pq 



 
(32) 

where the second term is due to the attraction while the third 

term is randomization with α being the randomization parameter 

and randis a random number generator uniformly distributed in 

[0,1] [26]. β0 Shows the attractiveness of firefly pat source and 

its equal to Ip.αvalue can be set between 0 and 1. 

Obviously, if a firefly is not attracted to any other fireflies; 

x𝑝𝑖 − x𝑞𝑖  in (32) will be zero and this firefly will move 

randomly. 

In order to satisfy constraints (11) and (13) the χ𝑞  values 

should be modify as follows: 
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(33) 

 

For satisfying constraint (11) following parameters should 

be calculated: 

 

,old
qiqii xt  

 
i =1, 2, …, N    (34) 
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if  𝑡𝑖 ≥ 0 and 𝑧𝑞𝑖=1 (40) 
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 x

xx

t
xx iold

qiqi

 

if  𝑡𝑖 < 0 and 𝑧𝑞𝑖=1 (41) 

 

with regarding these modifications, all obtained values for 

𝑥𝑞𝑖  (i=1, 2, …, N) are in the bounds, and the sum of 𝑥𝑞𝑖  (for 

i=1, 2, …, N) is equal to 1. 

FA Metaheuristic 

The flowchart of the proposed algorithm is shown in figure 2. In 

our proposed algorithm, a given number of iterations is required 

to reach the end of the algorithm. 
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Fig. 2. The flowchart of the proposed algorithm 

Parameters Tuning 

All metaheuristic approaches have parameters that their 

values can affect convergence speed and quality of final 

solutions. Therefore, these parameters should be tuned to their 

best values. One of the well-known methods to study the 

impact of various factors and interactions between them is the 

design of experiments (DOE). 

Concerning proposed algorithm parameters and the 

combination of them, our required experiment will be large-

scale. Thus six major parameters are chosen among all 

parameters for tuning. These parameters with their levels are 

observed in table 1. 

Due to the parameters and number of levels, we need at 

least 36 experiments for tuning the algorithm. In such cases, 

to reduce the number of experiments Taguchi design is used 

instead of the full factorial experiment. In Taguchi design, 

the primary goal is to find factor settings that minimize 

response variations, while adjusting (or keeping) the process 

on target. So we use Taguchi design to set parameters value 

in this paper. 

 

 

 

 

 

 

 

Table 1. Taguchi design for parameters tuning 

Row Factor 

 
Levels 

 
Level 1 Level 2 Level 3 

1 𝛾  0.01 100 1000 

2 𝛽0  0.5 1 2 

2 𝜔1  0.05 0.2 0.9 

3 𝜔2  0.1 0.9 2 

4 𝜔3  0.01 0.1 0.9 

5 𝜔4  0.001 0.01 0.1 

6 𝛼  0.001 0.01 0. 1 

 

Selected levels obtained from the experiment result are 

shown in bold in the above table. 

3. Computational Experiments 

In this section, we present the results obtained from 

searching feasible space by FA and trace the general efficient 

frontier that provides the solution to the problem formulated 

in Eqs. (10)- (14). The FA approach of this study has been 

compared to four other approaches embracing GA, TS, SA that 

used in[17] and PSO that used in[19]. The benchmark data, 

which have been used elsewhere [17, 18], were obtained from 

http://people.brunel.ac.uk/Emastjjb/jeb/orlib/portinfo.html. 

These data correspond to weekly prices between March 1992 

and September 1997 from the following indices: Hang Seng in 

Hong Kong, DAX 100 in Germany, FTSE 100 in the UK, S&P 

100 in the USA, and Nikkei 215 in Japan. For each set of test 

data, the number, N, of different assets is 31, 85, 89, 98, and 

215, respectively.  

All the results have been computed using the values k=10, 

휀𝑖 =0.01 and 𝛿𝑖 =1 (i=1, 2, ..., N) for the problem formulation 

and ∆λ =0.02 the implementation of the algorithms the 

number of different λ is 51. The algorithms used the same test 

data. It is noteworthy to mention that we implement the FA 

algorithm using a Core 2 Dou, 2.16 GHz computer with 3 GB 

of memory. The execution time of FA was 35 seconds for 

Hang Seng, 87 seconds for DAX 100, 188 seconds for FTSE 

100, 202 seconds for S&P 100, and 764 seconds for Nikkei.  

Each of the five metaheuristics has evaluated 1000N 

portfolios without counting the initialization stages. This study 

compared the corresponding metaheuristic efficient frontiers 

and the standard efficient frontiers. For this purpose, we used 

mean Euclidian distance, the variance of return error, and 

mean return error[19].  

Let (v𝑖
𝑠, r𝑖

𝑠) (i=1, 2, ..., 2000) be the variance and the mean 

return of the point in the standard efficient frontier, and let 

(v𝑗
ℎ, r𝑗

ℎ) (j=1, 2, ..., 51) be the variance and the mean return of 

the point in the metaheuristic efficient frontier. Let (v𝑒
𝑠, r𝑒

𝑠) be 

the point in the standard efficient frontier that has the 

minimum Euclidean distance from the metaheuristic point 

(v𝑗
ℎ, r𝑗

ℎ) where e is defined as follows: 

http://people.brunel.ac.uk/Emastjjb/jeb/orlib/portinfo.html
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Therefore mean Euclidean distance, variance of return error 

and mean return error are defined respectively as follows:  
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After implementing our proposed FA method with different 

indices, we obtain the efficient frontier as discussed earlier. 

Using the characteristics of the points on the efficient frontier 

we calculate the above-mentioned Error Criteria.  Table 

2 summaries the comparative results of the error criteria 

among different methods considering each index.   

 

Table 2. The experimental results of five heuristics 

 
GA TS SA PSO FA 

 Heng Seng 

Mean Euclidian distance 0.004 0.004 0.004 0.0049 0.0000727 

Variance of return error (%) 1.6441 1.6578 1.6628 2.2421 2.088 

Mean return error (%) 0.6072 0.6107 0.6238 0.7427 0.5405 

 DAX100 

Mean Euclidian distance 0.0076 0.0082 0.0078 0.009 0.00019 

Variance of return error (%) 7.218 9.0309 8.5485 6.8588 10.4878 

Mean return error (%) 1.2791 1.9078 1.2817 1.5885 1.6617 

 FTSE100 

Mean Euclidian distance 0.002 0.0021 0.0021 0.0022 0.000056 

Variance of return error (%) 2.866 4.0123 8.5485 3.8205 4.3373 

Mean return error (%) 0.3277 0.3298 0.3304 0.364 0.4572 

 S&P100 

Mean Euclidian distance 0.0041 0.0041 0.0041 0.0052 0.00014126 

Variance of return error (%) 3.4802 5.7139 5.4247 3.9136 6.0428308 

Mean return error (%) 1.2258 0.7125 0.8416 1.404 1.3432711 

 Nikkei 

Mean Euclidian distance 0.0093 0.001 0.001 0.0019 0.00002405 

Variance of return error (%) 1.2056 1.2431 1.2017 2.4274 1.712559 

Mean return error (%) 5.3266 0.4207 0.4126 0.7997 0.4797921 

It could be observed from table 2 that the proposed FA has a 

significant contribution to the mean Euclidian distance 

criterion while the other two criteria are like other methods. It 

appears that any method has a different behavior within each 

index. Some methods are better in more volatile markets such 

as Heng Seng, while some are better within lower volatility 

markets. Considering the volatility of each sample data set, it 

seems that FA has better performance (i.e. lower mean and 

variance of return error) in high-risk markets. Fig. 3 shows the 

efficient frontiers obtained from solving FA using each index. 

Fig.3 shows an intuitive result that from an optimization point 

of view. Since the cardinality constrained portfolio problem 

has a smaller search space than the standard portfolio problem, 

the resulting efficient frontier of FA proposes an inferior 

solution.  
 

Fig. 3. Firefly efficient frontier (Vertical vectors show mean return and 

horizontal vectors show the variance of return 

To compare the efficiency of our firefly metaheuristic with 

different approaches in the literature, we use the results of 

some related works including [17] and [19]. We compare the 

performance of our proposed algorithm with GA, TS, SA, and 

PSO statistically, since we believe the underlying methods and 

their respective performances are based on the quality of the 

resulting efficient frontier. To test the compatibility of the 

performances derived by different metaheuristic algorithms, a 

randomized complete block experiment is conducted [26]. In 

the proposed experiment, the effect of benchmark problems is 

blocked to reduce experimental error and to provide more 

dependable inferences.  

The ANOVA for randomized complete block design is 

performed with five metaheuristic algorithms as treatments 

and five benchmark problems as blocks and one observation 

per cell. In this analysis, the performance of the algorithm is 

measured with mean Euclidean distance error (MED). The 

result of ANOVA for complete block design of algorithms 

comparative study are summarized in Table 3.  Based on the 

ANOVA test, since treatment has a small p-value we can 

conclude that there exists a significant difference within the 

performance of different metaheuristics at 5% level.  
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Table 3. Tests of Between-Subjects Effects Dependent Variable: Med A. R 

Squared = .720 (Adjusted R Squared = .580) 

b. Computed using alpha = .05 

Source SS d.f. MS F Sig. Powerb 

Treatment 8.353E-5 4 2.088E-5 5.717 .005 .928 

Block 6.673E-5 4 1.668E-5 4.567 .012 .855 

Error 5.845E-5 16 3.653E-6    

Total .001 25     

 

Fig. 4. Residual Plot for Tesing Model Assumptiond  

As illustrated in Figure 4, the residual plot shows that the 

residuals are randomly distributed about zero (no pattern in the 

residual plot). Therefore, the underplaying independent 

assumption of the statistical test is not violated. Additionally, 

the residuals versus predicted and observed values indicate 

that it is approximately normally distributed. Considering 

ANOVA results, one could conclude that the performance 

varies among different methods but would have no idea about 

which would have higher or lower effectiveness. 

Mathematically speaking, the analyst should determine 

whether the difference between the two-sample mean is 

statistically significant or not. One simple way of examining 

this issue is to conduct multiple t-tests also known as LSD post 

ANOVA analysis. The main disadvantage of this method is 

that with multiple comparisons, these errors will be 

accumulated (up to 20% for this case with five cases assuming 

a 95% confidence level). There are several approaches in non-

parametric statistics for overcoming above mentioned 

issue.  In this paper, we used the Tukey HSD test which 

uses studentized statistics for multiple comparisons of mean 

responses to determine the most efficient algorithms 

concerning error measures. The Tukey HSD test results 

summarized in table 4, disclose that our proposed FA 

algorithm performs better than GA, TS, SA, and PSO.  

 

 

 
 

4. Conlusion 

This paper studied a practical portfolio optimization problem 

with floor, ceiling, together with cardinality constraints, which 

plays an important role in financial decision-making literature. 

A firefly algorithm was proposed to find the efficient frontier of 

the portfolio problem subject to the cardinality constrained. 

Computational experiments on five sample benchmark data sets 

were conducted to examine the effectiveness of the proposed FA 

to solve the cardinality constrained portfolio problem. Finally, 

the performance of the fine-tuned algorithm was compared with 

previously proposed algorithms including genetic algorithms, 

tabu search, simulated annealing, and particle swarm 

optimization. The positive significant effect of the 

proposed metaheuristic on obtained results was proved through 

the ANOVA test and a multiple comparison test using post-

ANOVA analysis. The results indicate that when dealing with 

problem instances that demand mean portfolios return with a 

low risk of investment, the proposed FA optimization model 

gives better solutions in high volatility markets than the 

other metaheuristic methods. Moreover, statistical analysis 

shows that the proposed metaheuristic has a significantly lower 

error than other methods in the literature. 
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