
International Journal of Industrial Engineering & Management Science, Vol. 8, Issue 2, (2022) 8-17 

    

 

 
 
 

 

 

 

 
*  Corresponding author.  

E-mail address: amobalegh@yahoo.com 

 

 

International Journal of Industrial Engineering & Management Science 

j o u r n a l   h o m e p a g e  :   w w w . i j i e m s . c o m  

 University of 
Hormozgan 

Estimating the remaining useful life of equipment based on an optimal deep learning 

model and cross-correlation based similarity analysis 

Amir Moballeghtohida,*, Fazilat Ahmadzadeb, Omid Ahmadzadec  
 
a CMO at REIS Future Canada Inc, Winnipeg, Canada 
b CEO at REIS Future Canada Inc, Winnipeg, Canada 
c CTO at REIS Future Canada Inc, Winnipeg, Canada 

 

 

 

 

 

                                                                         A A B S T  R  A  C  T 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the increasing level of competition among manufacturing 

companies, the importance and sensitivity of equipment health have 

also increased. Companies are making more efforts to minimize 

downtime on their product line. Due to this issue, the focus of 

maintenance researchers on CBM and PHM methods has increased. 

These methods are based on actions such as momentary monitoring 

of equipment, information extraction (such as information from 

vibration sensors, temperature, etc., or physical information such as 

cracking, wear, etc.), data analysis, and final decision on maintenance 

strategy [1]. Estimating the RUL, i.e. determining the time to 

equipment failure, is one of the most important steps in the PHM 

process. Knowing the RUL of the equipment will help you make the 

optimal decision to maintain, repair, or replace it  [2]. 

In general, in PHM-related research, two general approaches to 

estimating the RUL have been proposed: the physics of failure 

approach and the data-driven approach [3]. In the physics of failure 

approach, the RUL is estimated using a physical model that relates 

failures (such as cracks, corrosion, wear, etc.) to the life of the 

equipment. One of the most important drawbacks of this method is 

determining an accurate mathematical model due to the high 

sensitivity of the model parameters and the difficulty of accurately 

identifying equipment failures and determining the extent of failure 

[4]. In the data-driven approach, the RUL is estimated based on the 

data extracted from sensors (such as vibration, temperature, pressure, 

etc.), and the analysis of this data is done using statistical methods and 

artificial intelligence [5]. 

So far, a lot of research has been done based on the mentioned 

approaches for assessing RUL. Variety in artificial intelligence, 

machine learning, and statistical methods for determining 

deterioration and forecasting the remaining time until failure has led 

to the development of various processes. As an example in reference 

[6], some types of these methods have been studied according to the 

type of equipment (bearings, shafts, gears, pumps, and cranes). The 

most important part of rotating machines is the bearing and 45-55% 
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of system failures are due to bearing failure [7]. Our focus in this paper 

is on forecasting the RUL based on a data-driven approach. 

One of the challenges in estimating the remaining useful life is 

designing the estimation model. A proper estimation model can 

increase the accuracy of the forecast. Recently, models based on deep 

learning have shown their high capability in forecasting and the long 

short-term memory (LSTM) network is one of these successful 

models. The advantages of LSTM compared to the recurrent neural 

network (RNN) are considering long-term dependencies and also 

controlling the level of forgetfulness of this dependence. Despite the 

high advantages of the LSTM model, the architectural design of this 

model has a significant effect on its accuracy. Selecting the optimal 

hyperparameters and the correct activation functions that can be used 

can increase the accuracy of the model. Another challenge in 

estimating the remaining useful life is to determine a reference model 

for forecasting. Because learning data have different behaviors, the 

models fitted by each of these data can produce different results in 

predicting the RUL. Therefore, there is a need for a way to determine 

the appropriate reference model based on the similarity of learning 

and test data. According to the mentioned issues, in this research, a 

process for estimating the RUL for rolling bearings is presented in 

which the LSTM is used to predict the RUL. To optimize the LSTM, 

due to the nonlinearity of the optimization model, a meta-heuristic 

approach based on the differential evolution (DE) algorithm is 

proposed. Also, to determine the reference model for forecasting new 

data (data that we intend to use to estimate the remaining useful life), 

the cross-correlation method has been used to determine the similarity 

between learning data and new data. 

The rest of the paper is organized as follows: In Section 2, the works 

related to determining the RUL of rolling element bearings based on 

deep learning are presented. In Section 3, the proposed method is 

described. In Section 4, the case study of the research is presented 

including data, evaluation method, and results and Section 5 

concludes the paper. 

 

2. Literature review 

In recent years, much research has been done on the design of RUL 

estimation processes. Also, several review articles have been 

presented to collect and analyze these researches. For example, 

Ferreira & Gonçalves (2022) had an overview of RUL estimation 

models using machine learning [8]. Aloud & Alkhamees (2021) Focus 

on research related to RUL estimation of lithium batteries [9]. Sayyad 

et al. (2021) Reviewed articles related to the use of artificial 

intelligence in the design of RUL determination models [10]. In this 

section, we focus on articles related to the use of machine learning 

techniques in predicting bearing RUL . 

Li et al. (2019) focus on The time-frequency domain information 

for prognostics, and multi-scale feature extraction using convolutional 

neural networks [11]. A data-driven framework is proposed by Cheng 

et al.(2020) to exploit the adoption of deep convolutional neural 

networks (CNNs) in predicting the RULs of bearings. raw vibrations 

of training bearings are first processed using the Hilbert–Huang 

transform to construct a novel nonlinear degradation energy indicator. 

The CNN is then employed to identify the hidden pattern between the 

extracted degradation energy indicator and the raw vibrations of 

training bearings. Shen et al. (2021) propose a physics-informed deep 

learning approach that consists of a simple threshold model and a deep 

convolutional neural network (CNN) model for bearing fault 

detection. In the proposed physics-informed deep learning approach, 

the threshold model first assesses the health classes of bearings based 

on the known physics of bearing faults. Then, the CNN model 

automatically extracts high-level characteristic features from the input 

data and makes full use of these features to predict the health class of 

a bearing. Dong et al. (2021) use transfer learning and deep 

hierarchical feature extraction to extract the features of vibration. 

degradation assessment is transformed to the classification task of 

degradation pattern, which divides the degradation process into 

normal, slight fault, fault development, and damage patterns. The 

hierarchical network with random weight parameters is introduced to 

extract the local sub-band characteristics of the spectrum, in which the 

multiple alternately convolution and pooling layers without 

supervised fine-tuning are employed [12]. Zhang et al. (2021) propose 

a transfer learning method for remaining useful life predictions using 

deep representation regularization. The practical and challenging 

scenario is investigated, where the training and testing data are from 

different machinery operating conditions, and no target-domain run-

to-failure data is available for training [13]. Ding et al. (2021) present 

a deep convolutional neural network (DCNN) model without a 

pooling layer, which consists of three convolutional layers and two 

fully connected layers to estimate the RUL [14]. Huang et al. (2021) 

introduce the new approach using transfer depth-wise separable 

convolution recurrent network (TDSCRN) for RUL estimation of 

bearing [15]. Su et al. (2021) present a two-stage process for 

estimating the RUL: in the first stage, a feature pre-extraction 

mechanism is designed to pre-extract the low-level features in 

relatively high dimensional space, which requires no additional 

manual operations of feature fusion and feature selection in existing 

methods. In the second stage, an adaptive transformer, a new deep 

model integrating the attention mechanism and the recurrent 

architecture, is proposed to model the relationships between these 

low-level features and the RULs directly, which suppresses the issue 

of vanishing gradients and is more suitable for representing the 

complex temporal degradation characteristics. Ding et al. (2021) 

introduce a method called deep transfer metric learning for kernel 

regression (DTMLKR) and applied it to the RUL prediction of 

bearings under multiple operating conditions. This method combines 

deep metric learning with transfer learning (TL) to solve regression 

problems [16]. Zhao & Yuan (2021) proposes a scheme that contains 

both classification and regression, where the 2D-DCNN based 

classifier and predictors are built concerning typical fault conditions 

of a bearing. For the online prediction, the raw signals are spanned in 

the time-frequency domain and then transferred into images as the 

input of the scheme. The classifier is used to monitor the vibration of 

rolling bearings for online fault recognition and excite the 

corresponding predictor for RUL prediction once a fault is detected. 

The output from the predictor is amended by the proposed adaptive 

delay correction method as the final prediction results [17]. Chen et 

al. (2022) have used a new multi-scale long-term recurrent 

convolutional network framework with wide first layer kernels and 

residual shrinkage building unit (MSWR-LRCN) to estimate the 

remaining bearing life [18].The major difference from the previous 

deep neural network is that this new network organically combines 

the attention mechanism with a multi-scale feature fusion strategy, 

and improves the anti-noise ability of the entire network. Hu et al. 

(2022) propose a novel method called Deep Feature Disentanglement 
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Transfer Learning Network (DFDTLN) to extract domain-invariant 

features. In the proposed method, shared domain-invariant 

representations and private representations are disentangled by a pair 

of joint learning autoencoders. The effectiveness of the proposed 

method is verified using IEEE PHM Challenge 2012 dataset. The 

comparison results show the deep features extracted by DFDTLN are 

more domain-invariant and suitable for RUL prediction [19]. Wan et 

al. (2022) present a novel deep learning framework with multi-branch 

networks, which are called convolutional long short-term memory 

fusion networks (CLSTMF) for RUL prediction with multi-sensor 

data. In each branch network, shallow features of a single sensor's data 

are extracted by the convolutional layer of the convolutional neural 

network (CNN), and then the convolutional long short-term memory 

(CLSTM) network is employed to capture deep temporal features 

from these shallow features. Meanwhile, a novel information transfer 

layer (ITL) is developed to fuse the multi-sensor data's features 

captured with CLSTM in different branch networks [20].  The use of 

contrastive learning to maintain mutual information may introduce 

unstable negative samples. To overcome these issues Zhuang et al. 

(2022) present a metric adversarial domain adaptation approach 

(MADA) proposed to evaluate the bearing RULs under multiple 

working conditions. More specifically, an adversarial domain 

adaptation architecture with a supervised positive contrastive module 

is developed to consider mutual information without a negative 

sample, further learning domain invariant features. Also, the dual self-

attention module is designed to extract multi-scale contextual 

semantics between degradation features [21].  Sparse representation 

is a practical approach for mining fault information from vibration 

signals. Zhou et al. (2022) proposes a novel end-to-end deep network-

based sparse denoising (DNSD) framework based on a model-data-

collaborative linkage framework for RUL estimation of bearing [22]. 

Table 1 provides a summary of the mentioned researches. 
 

 

 

 

 

 

 

 

 

Table 1: Recent research related to RUL Bearing estimation based on deep learning approaches 

References  Method 

[1] multi-scale feature extraction is implemented using convolutional neural networks 

[2] Hilbert–Huang transform based feature extraction and CNN for forecasting 

[3] 
a physics-informed deep learning approach that consists of a simple threshold model and a deep convolutional neural 

network (CNN) model 

[4] transfer learning and deep hierarchical features extraction 

[5] transfer learning method for remaining useful life predictions using deep representation regularization 

[6] convolutional neural network 

[7] transfer depth-wise separable convolution recurrent network (TDSCRN) 

[8] 
adaptive transformer, a new deep model integrating the attention mechanism and the recurrent architecture, is proposed to 

model the relationships between these low-level features and the RULs directly 

[9] deep transfer metric learning for kernel regression (DTMLKR) 

[10] 2D-DCNN based classifier 

[11] end-to-end deep network-based sparse denoising (DNSD) framework 

[12] adversarial domain adaptation architecture with a supervised positive contrastive module 

[13] 
multi-scale long-term recurrent convolutional network with wide first layer kernels and residual shrinkage building unit 

(MSWR-LRCN) 

[14] Deep Feature Disentanglement Transfer Learning Network (DFDTLN) to extract domain-invariant features 

[15] convolutional long short-term memory fusion networks (CLSTMF) 

Proposed 

model 
Optimized deep LSTM model selected based on the cross-correlation similarity index 

3. Proposed Model 

3.1. Methods 

Long short-term memory 

LSTM is an artificial neural network used in the fields of artificial 

intelligence and deep learning. LSTM as an extension of RNN has a 

strong capability of forecasting time series data [26]. The main 

difference between an RNN and LSTM is that LSTM can store long-

range time dependency information and can suitably map between 

input and output data [26]. The LSTM network structure differs from 

the conventional perceptron architecture as it contains a cell and gates 

which controls the flow of information. Specifically, the LSTM 

contains an input gate, a forget gate, an internal state (cell memory), 

and an output gate as illustrated in Figure 1. The notations of Figure 

1 are as follows [27]: 

− 𝑥(𝑡𝑖): The input value 

− ℎ(𝑡𝑖−1) and ℎ(𝑡𝑖): The output value at time 𝑡𝑖−1 and 𝑡𝑖. 
− 𝑐(𝑡𝑖−1) and 𝑐(𝑡𝑖): Cell states at time 𝑡𝑖−1 and 𝑡𝑖. 

− 𝑏 = {𝑏𝑎, 𝑏𝑓, 𝑏𝑐 , 𝑏𝑜} are biases of input gate, forget gate, internal 

state, and output gate. 

− 𝑊1
⃗⃗ ⃗⃗  ⃗ = {𝑤𝑎 , 𝑤𝑓 , 𝑤𝑐 , 𝑤𝑜} are weight matrixes of input gate, forget 

gate, internal state, and output gate. 

− 𝑊2
⃗⃗ ⃗⃗  ⃗ = {𝑤ℎ𝑎, 𝑤ℎ𝑓, 𝑤ℎ𝑐 , 𝑤ℎ𝑜} are the recurrent weights. 

− 𝑎 = {𝑎(𝑡𝑖), 𝑓(𝑡𝑖), 𝑐(𝑡𝑖), 𝑜(𝑡𝑖) } are the output results for the input 

gate, forget gate, internal state, and output gate. 

 
Figure 1: The structure of LSTM [27] 

Considering these notations, the operation of LSTM is as follows: 

The forget gate 𝑓(𝑡𝑖) uses 𝑥(𝑡𝑖) and ℎ(𝑡𝑖−1) as input to compute the 

information to be preserved in 𝑐(𝑡𝑖−1) using a transfer function. The 



International Journal of Industrial Engineering & Management Science, Vol. 8, Issue 2, (2022) 8-17 

 
input gate 𝑎(𝑡𝑖) takes 𝑥(𝑡𝑖) and ℎ(𝑡𝑖−1) to compute the value of 𝑐(𝑡𝑖). 

The output gate 𝑜(𝑡𝑖) performs regulation on the output of an LSTM 

cell by considering 𝑐(𝑡𝑖) and applying two transfer functions. 

Mathematically the forward learning of an LSTM is as follows: 

𝑎(𝑡𝑖) = 𝜎𝑔(𝑤𝑎𝑥(𝑡𝑖) + 𝑤ℎ𝑎ℎ(𝑡𝑖−1) + 𝑏𝑎)  1)) 

𝑓(𝑡𝑖) = 𝜎𝑔(𝑤𝑓𝑥(𝑡𝑖) + 𝑤ℎ𝑓ℎ(𝑡𝑖−1) + 𝑏𝑓)  2)) 

𝑐(𝑡𝑖) = 𝑓𝑡  𝑐(𝑡𝑖−1) + 𝑎𝑡  𝜎𝑐(𝑤𝑐𝑥(𝑡𝑖) + 𝑤ℎ𝑐(ℎ(𝑡𝑖−1) + 𝑏𝑐))  3)) 

𝑜(𝑡𝑖) = 𝜎𝑔(𝑤𝑜𝑥(𝑡𝑖) + 𝑤ℎ𝑜ℎ(𝑡𝑖−1) + 𝑏𝑜)  4)) 

ℎ(𝑡𝑖) = 𝑜(𝑡𝑖) 𝜎𝑐(𝑐(𝑡𝑖))  5)) 

Where 𝜎𝑔 and 𝜎𝑐 are activation functions. Overall, the LSTM learns 

using the following steps: 

(1) Compute the LSTM output using Eqs. (1)–(5) (forward learning). 

(2) Compute the error between the resulted data and input data of 

each layer. 

(3) The error is reversely propagated to the input gate, cell, and forget 

gate. 

(4) Based on the error term, the weight of each gate is updated using 

an optimization algorithm. 

The above four-step process is repeated for a given number of 

iterations and the optimal values of weights and biases are obtained. 

 

Cross-correlation 

Cross-correlation is a measure of similarity of two series as a 

function of the displacement of one relative to the other. The true 

cross-correlation sequence of two jointly stationary random 

processes, 𝑥𝑛 and 𝑦𝑛 with length 𝑁 is given by [28]: 

 𝑅̂𝑥𝑦(𝑚) = 𝐸{𝑥𝑛+𝑚𝑦𝑛
∗} = 𝐸{𝑥𝑛𝑦𝑛−𝑚

∗ } = {
∑ 𝑥𝑛+𝑚𝑦𝑛

∗𝑁−𝑚−1
𝑛=0              𝑚 ≥ 0

𝑅̂𝑥𝑦
∗ (−𝑚)                            𝑚 < 0

 6)) 

Where 𝑅̂𝑥𝑦(𝑚) is the estimation of cross-correlation in lag 𝑚, the 

asterisk (∗) denotes complex conjugation, and 𝐸 is the expected value 

operator. 

 

Differential evolution 

Differential Evolution (DE) is an evolutionary, stochastic, 

population-based optimization algorithm introduced by Storn and 

Price in 1996 [16]. Error! Reference source not found. depicts the 

flowchart of DE. In DE an optimal solution is explored from a 

randomly generated starting population using three evolutionary 

operations: mutation, crossover, and selection. For each generation, 

the individuals of the current population become target vectors and 

their fitness function value is calculated. Then the mutation operation 

produces a mutant vector 𝑚𝑖𝑗 for each individual target vector 𝑥𝑗  

using the Equation (7): 

 𝑚𝑖𝑗 = 𝑥𝑟1𝑗 + 𝐹 × (𝑥𝑟2𝑗 − 𝑥𝑟3𝑗) 7)) 

Where 𝑟1 ≠ 𝑟2 ≠ 𝑟3 are random and mutually exclusive integers. 

The mutant vector along with the target vector is further passed 

through the crossover operation to produce a trial vector as follows: 

 𝑡𝑖𝑗 = 𝑚𝑖𝑗  𝑖𝑓 𝑟𝑎𝑛𝑑[0,1]  ≤ 𝑐𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑  𝑒𝑙𝑠𝑒 𝑥𝑖𝑗 8)) 

The trial vector replaces the target vector if its fitness value is better 

than the target vector. So it can be summarized that mutation enlarges 

the search space, Crossover recapitulates previously successful 

individuals and selection encourages the survival of the fittest. The 

mutation, crossover and selection operations are repeated until some 

termination condition is reached. 

 

3.2. Remaining useful life estimation based on optimal deep 

learning and similarity analysis 

Error! Reference source not found. shows the proposed RUL 

estimation process. There are two datasets of learning and testing in 

this process. The learning set includes 𝑁 bearings and the test set 

includes 𝑀 bearings. Learning set bearings were used to fit the 

forecasting models and test set bearings were used to evaluate the 

proposed process. In the following, the proposed process is described 

in terms of its general steps: 

 

Initialize controlling parameters of DE

Randomly initialize population vector

Calculate fitness value  (RMSE) of each vector 

Mutation

Crossover

Selection

Is termination 

condition satisfied?

Save the vector with minimum fitness value as 

solution vector

YES

NO

 
Figure 2: The flowchart of DE [16] 

 

Feature extraction 

In most cases, raw data such as vibration, temperature, pressure, 

etc., can’t reflect all the characteristics related to the equipment failure 

process. For this reason, features are extracted from raw data to 

increase the ability to describe the failure process. This study focuses 

on the features of bearing vibrations including entropy, energy, RMS, 

skewness, and kurtosis. These features have been considered by 

researchers in many studies to estimate the remaining useful life. One 

of the drawbacks of these features is their low trendability and 

smoothness, which confuses the forecasting model. For this reason 

[17] has used the cumulative values of these features, which has led 

to higher accuracy of the forecasting model. In this process, we also 

use the cumulative values of the entropy, energy, RMS, skewness, and 

kurtosis features of the vibration. 

 

Optimization of LSTM 

In Error! Reference source not found., the proposed LSTM 

model for RUL forecasting is presented, which is defined as a 

regression model. As can be seen, the inputs of the LSTM are 

cumulative features and the output is RUL. Layers include the input 

layer, LSTM layer, and fully connected layer. In this step, the optimal 

LSTM models for each of the learning set bearings are trained and 

stored. There are settings that can affect the accuracy of the LSTM 

and should be optimized: 

• The number of hidden units: The number of hidden units 

corresponds to the amount of information remembered between 

time steps (the hidden state). The hidden state can contain 

information from all previous time steps, regardless of the sequence 

length. If the number of hidden units is too large, then the layer 

might overfit to the training data. This value can vary from a few 

dozen to a few thousand. 

• Size of mini-batch: A mini-batch is a subset of the training set that 

is used to evaluate the gradient of the loss function and update the 

weights
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Figure 3: Proposed RUL estimation process 

 

 

Figure 4: Proposed LSTM model architecture 
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• Learning rate: The learning rate is a hyperparameter that controls 

how much to change the model in response to the estimated error 

each time the model weights are updated. if the learning rate is too 

low, then training can take a long time. If the learning rate is too 

high, then training might reach a suboptimal result or diverge. 

• The maximum number of epochs: An iteration is one step taken in 

the gradient descent algorithm towards minimizing the loss function 

using a mini-batch. An epoch is the full pass of the training 

algorithm over the entire training set. 

• State Activation function : Activation function to update the cell 

and hidden state (𝜎𝑐 = 𝑡𝑎𝑛ℎ or 𝜎𝑐 = softsign function =
𝑥

1+|𝑥|
) 

• Gate activation function: Activation function to apply to the gates 

(𝜎𝑔 = {

0                              𝑖𝑓 𝑥 < −2.5
0.2𝑥 + 0.5                𝑖𝑓 − 2.5 < 𝑥 < 2.5

1                                 𝑖𝑓 𝑥 > 2.5 
 

In this research, the focus is on optimizing the mentioned settings. 

For this purpose, a differential evolution model is proposed to solve 

the LSTM optimization model. Error! Reference source not found. 

shows a chromosome of the differential evolution model and the range 

of each of the variables. The purpose of the optimization model is to 

minimize the estimation error or RMSE. 

𝑔𝑎𝑓 
{0,1} 

𝑠𝑎𝑓 
{0,1} 

𝑚𝑛𝑒 
[5,100] 

𝑙𝑟 
[0.001,1] 

𝑚𝑏𝑠 
[5,1000] 

𝑛ℎ𝑢 
[10,1000] 

Figure 5: Chromosome model of the proposed differential evolution algorithm - 𝑛ℎ𝑢: 

number of hidden units, 𝑚𝑏𝑠: minimum batch size, 𝑙𝑟: learning rate, 𝑚𝑛𝑒: maximum 

number of epochs, 𝑠𝑎𝑓: state activation function (0 = 𝑡𝑎𝑛ℎ, 1 = 𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛), 𝑔𝑎𝑓: gate 

activation function (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 ℎ𝑎𝑟𝑑 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

 

In Error! Reference source not found., the pseudocode of the 

differential evolution model for optimizing the LSTM network for 

each of the learning bearings is presented: 

 
Figure 6: Pseudocode of the differential evolution model for optimizing the LSTM 

network 

 

The mutation operator for the variables 𝑛ℎ𝑢, 𝑚𝑏𝑠, 𝑙𝑟, and 𝑚𝑛𝑒 in 

𝑥𝑖 which leads to the mutant solution 𝑉𝑖 is considered as an Equation 

(9). For the variables saf and gaf, one of the values 0 or 1 is randomly 

assigned: 

 𝑉𝑖 = 𝑥𝑟1 + 𝐹. (𝑥𝑟2 − 𝑥𝑟3) 9)) 

Where 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 are randomly generated exclusive 

integers within [1,𝑀]. The scaling factor 𝐹 is a positive control 

parameter to the scale difference vector. Each pair of target vectors 𝑥𝑖 

and their corresponding mutation vectors 𝑉𝑖 are crossed to generate a 

test vector 𝑈𝑖 = (𝑢1, 𝑢2, … , 𝑢𝑖). In the DE algorithm, a binomial 

crossover is defined as follows: 

𝑢𝑖 = {
𝑣𝑖        𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗(0,1) ≤ 𝐶𝑅)  𝑜𝑟  (𝑗 = 𝑗𝑟𝑎𝑛𝑑, 𝑗 = 1,2,3, … , 𝐷)

𝑥𝑖                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

10)) 

Where the crossover rate 𝐶𝑅 is a specified constant on [0,1] which 

is used to control the duplicated proportion from the mutation vector. 

𝑗𝑟𝑎𝑛𝑑 is a randomly selected integer on [1, 𝐷]. The optimization 

algorithm stops when the value of the objective function is not 

changed in 150 iterations. 

 

Determining the appropriate forecasting model based on the 

cross-correlation similarity index 

To forecast the RUL of new data, the appropriate model must be 

selected from the models trained by the learning data. Naturally, a 

suitable model is trained for learning data similar to new data. In this 

study, cross-correlation has been used to determine the level of 

similarity between time series. For this purpose, the similarity 

between the new ith data and the learning data is calculated as 

Equation (11): 

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑖, 𝑗) = 𝑚𝑎𝑥{𝑅𝑖𝑗(𝑚),𝑚 ∈ [−𝑙, 𝑙]} 11)) 

Where 𝑅𝑖𝑗(𝑚) is the cross-correlation between the data of the ith 

testing bearing and the jth learning data in the lag 𝑚, and 𝑙 is the 

maximum number of lags considered for the cross-correlation. After 

determining the similarity index of the ith bearing with all learning 

bearings, the learning data 𝑗∗ with the largest similarity index 

(𝑗∗ = max
𝑗

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑖, 𝑗)) as the reference bearing and the model 

𝐿𝑆𝑇𝑀𝑗∗ used as a reference model for forecasting. 

 

RUL estimation 

After determining the appropriate model for each of the test data, 

the RUL is estimated using the selected model and the new data: 

 𝑅𝑈𝐿̂𝑖 = 𝐿𝑆𝑇𝑀𝑗∗(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖)  12)) 

 

4. Case study 

4.1. Data 

PRONOSTIA (Error! Reference source not found.) is a 

laboratory platform designed to test and verify bearing failure 

detection and fault detection and prediction approaches [18]. This 

platform is designed in the AS2M department of FEMTO-ST 

Institute. The main purpose of PRONOSTIA is to provide real-life 

data that describes the bearing decay process over its entire life, i.e. 

until its total deterioration. 

The PRONOSTIA platform makes it possible to perform run-to-

failure tests. To avoid propagating the fault to the entire platform (and 

for safety reasons), it stops when the amplitude of the signal vibration 

exceeds 20g. Error! Reference source not found. (center) shows an 

example of what happens to bearings before and after failure, as well 

as the raw vibration signal collected throughout the test (right). Note 

that deteriorated bearings exhibit different behaviors and therefore 

lead to different test periods  

 
Figure 7: PRONOSTIA platform (left), before and after bearing failure (center), 

bearing vibration signal (right) [31] 

 

(up to failure). The data set collected by this system is generated 

under three conditions (Table 2): 

• First operating conditions: 1800 rpm and 4000N 

• Second operating conditions: 1650rpm and 4200N 

• Third operating conditions: 1500rpm and 5000N 

6 run-to-failure datasets are provided to create prediction models 

(learning datasets) and RUL estimates are required for the other 11 

bearings. Vibration signals are collected for all test components. 
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There is no assumption for the type of damage that occurred (no 

information about the root and origin of the deterioration: bullets, 

inner ring, outer ring, cage ...) 
Table 2: Overview of data generated by the PRONOSTIA platform 

Dataset 

Operating Condition 

First 
operating 

condition 

Second 
operating 

condition 

Third 
operating 

condition 

Learning dataset 
Bearing 1-1 Bearing 2-1 Bearing 3-1 

Bearing 1-2 Bearing 2-2 Bearing 3-2 

Testing dataset 

Bearing 1-3 Bearing 2-3 

Bearing 3-3 

 

Bearing 1-4 Bearing 2-4 

Bearing 1-5 Bearing 2-5 

Bearing 1-6 Bearing 2-6 

Bearing 1-7 Bearing 2-7 
 

4.2. Results 

Error! Reference source not found. shows the features and their 

cumulative values for the bearing 1-1. As can be seen, non-cumulative 

features are highly volatile, do not have a tangible trend, and are not 

smooth, therefore, they have low predictability. But as can be seen, 

cumulative features are quite trendy and also have much less volatility 

than non-cumulative features and therefore have high predictability.  

After extracting the features of each learning bearing, the optimal 

LSTM network for each learning bearing must be trained. Error! 

Reference source not found. shows the trend change of the objective 

function (RMSE value for LSTM network) for each iteration of the 

DE algorithm. Error! Reference source not found. shows the 

optimal values for each of the optimization problem variables that 

represent the LSTM model settings. 
Table 3: Optimized solutions of DE 

𝑔𝑎𝑓  𝑠𝑎𝑓  𝑚𝑛𝑒  𝑙𝑟  𝑚𝑏𝑠  𝑛ℎ𝑢  Bearing name 

0 0 41 0.007 160 101 Bearing 1-1 

1 0 27 0.003 76 68 Bearing 1-2 

1 1 14 0.009 59 42 Bearing 2-1 

1 0 66 0.012 220 25 Bearing 2-2 

0 1 72 0.029 95 170 Bearing 3-1 

0 1 29 0.001 181 26 Bearing 3-2 

 

 

 
Figure 8: Features extracted from bearing 1-1 vibration data 

 

 
Figure 9: RMSE changes based on the DE iterations 

After training the optimal LSTM model for each of the learning 

bearings, the similarity index for the test bearings is calculated. In 

Error! Reference source not found., the similarity index, which is 

based on cross-correlation, is shown for each pair of learning and test 

bearings. This index is calculated based on horizontal, vertical, and 

average vibrations of these two values and the decision criterion is 

based on the average value. Accordingly, the reference LSTM 

network for each of the test bearings is shown in Error! Reference 

source not found. 

Testing  

bearings 

1-3 1-4 1-5 1-6 1-7 2-3 2-4 2-5 2-6 2-7 3-3 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

Optimized 

trained 

LSTM  

reference 

model 

2-2 3-1 3-1 3-2 2-2 3-2 3-1 3-2 3-1 1-1 2-1 

Figure 11: selected LSTM network based on similarity analysis 

 

Finally, Error! Reference source not found. shows the estimated 

RUL, the actual RUL and percentage error of estimation  

 

Comparison with competing models 

To evaluate the proposed model, the results of the proposed model 

are compared with competing models. For this purpose, three 

prediction regression models have been used: multi-layer perceptron 

(MLP)[19], support vector regression (SVR) [20], and Gaussian 

process regression (GPR)[21]. These models, similar to the optimized 

LSTM model, are optimized using the DE algorithm. The optimized 

parameters for each of the models are: 

• MLP: number of hidden layers, number of nodes in hidden layers, 

learning rate, activation function 

• SVR: Kernel scale parameter, Number of iterations, Tolerance for 

gradient difference 

• GPR: Initial value for the noise standard deviation of the Gaussian 

process model, Constant value of Sigma for the noise standard 

deviation of the Gaussian process model, Lower bound on the noise 

standard deviation. 

Also, two similarity indices have been used to compare with cross-

correlation: Pearson correlation coefficient and inverse Euclidean 

distance. The process of calculating RUL based on competing 

forecasting models and similarity indices is quite similar to the 

process proposed in this paper. After calculating the RUL, two 
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evaluation criteria were used to compare the models. RMSE and 

SCORE criteria [22]:
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Figure 10: similarity index (normalized cross-correlation) for each pair of learning and test bearings 

 

Table 4: Estimated and actual RUL for test bearings 

Testing 

bearings 

Bearing 

1-3 

Bearing 

1-4 

Bearing 

1-5 

Bearing 

1-6 

Bearing 

1-7 

Bearing 

2-3 

Bearing 

2-4 

Bearing 

2-5 

Bearing 

2-6 

Bearing 

2-7 

Bearing 

3-3 

Estimated 

RUL 

(seconds) 

3020 121 1320 1270 8942 3211 1790 6734 410 650 690 

Actual RUL 

(seconds) 
5730 339 1610 1460 7570 7530 1390 3090 1290 580 820 

Error (%) 47.29 64.30 18.01 13.01 -18.12 57.35 -28.77 -117.93 68.21 -12.06 15.85 

 

 

 

𝐸𝑅𝑖 =
𝐴𝑐𝑡𝑅𝑈𝐿𝑖−𝑃𝑟𝑒𝑑𝑅𝑈𝐿𝑖

𝐴𝑐𝑡𝑅𝑈𝐿𝑖
× 100  13)) 

𝐴𝑖 = {
𝑒𝑥𝑝

− ln(0.5).(
𝐸𝑟𝑖
5

)    𝑖𝑓 𝐸𝑟𝑖≤0 

𝑒𝑥𝑝
+ ln(0.5).(

𝐸𝑟𝑖
20

)    𝑖𝑓 𝐸𝑟𝑖>0 
  14)) 

𝑆𝐶𝑂𝑅𝐸 =
1

𝑁
∑ 𝐴𝑖

𝑁
𝑖=1   15)) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑐𝑡𝑅𝑈𝐿𝑖−𝑃𝑟𝑒𝑑𝑅𝑈𝐿𝑖)

2𝑁
𝑖=1

𝑁
  16)) 

Where 𝐸𝑅𝑖 is the percentage error, 𝐴𝑐𝑡𝑅𝑈𝐿𝑖 is the actual RUL of 

𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖, 𝑃𝑟𝑒𝑑𝑅𝑈𝐿𝑖 is the estimated RUL of 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑖, 𝑁 is the 

number of members of the test set. Error! Reference source not 

found. shows the RMSE and SCORE criteria for forecasting models 

and measurement indicators. As can be seen, the proposed model of 

this paper has shown better performance than other models. Also, the 

cross-correlation index has been able to find a better forecasting 

model. According to the SCORE criterion, after the proposed model, 

MLP, SVR, and GPR models are in order of performance, 

respectively. Also, after the cross-correlation index, Pearson and 

Euclidian indices were able to find the optimal estimation model, 

respectively. These results are also validated by considering the 

RMSE criterion. 

 
Figure 12: Comparison of forecasting models and similarity indices 

 

5. Conclusion 

Determining the RUL of equipment is one of the most important 

PHM activities. In this paper, a process for determining the RUL of a 

bearing is presented, which focuses on optimizing the forecasting 

model as well as finding a suitable trained forecasting reference 

model. For this purpose, a DE algorithm is proposed to optimize the 

LSTM deep learning model and its architectural design. The cross-

correlation criterion was also used to find the reference model for 

forecasting. This criterion can determine the similarity of learning and 

test data by considering the co-movement with a time lag. To evaluate 

the proposed process, the FEMTO-ST Institute bearings dataset was 

used. The results obtained from the implementation of the proposed 

forecast model for the mentioned data have been compared with 

competing forecast models including MLP, SVR, and GPR models. 

Similar to the LSTM design process, competing forecasting models 

are optimized using the DE algorithm. The similarity indices used to 

compare with cross-correlation are Pearson correlation coefficient and 

inverse Euclidean distance. The results of this evaluation show that 

the proposed model (optimal LSTM model and cross-correlation) has 

better performance than competing models. The proposed research 

process can be used in situations where it is difficult to identify the 

forecast reference model due to a large number of learning data. In 

addition, using meta-heuristic models to optimize forecasting models 

can increase the possibility of finding the best forecasting model. The 

proposed research process can be developed in several ways. 

Utilization of autoregressive models such as LSTM autoregressive 

model or ARMA model for indirect prediction and model 

optimization can be used in future research. A comparison of other 

meta-heuristic models such as genetic algorithms to optimize 

prediction models can be considered as a research topic. 
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