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Integration in decision making at different organizational and time levels has 

important implications for increasing the profitability of organizations. Among the 

important issues of medium-term decision-making in factories, are production 

planning problems that seek to determine the quantities of products produced in the 

medium term and the allocation of corporate resources. Furthermore, at short-term, 

jobs scheduling and timely delivery of orders is one of the vital decision-making 

issues in each workshop. In this paper, the production planning and scheduling 

problem in a factory in the north of Iran is considered as a case study. The factory 

produces cans and bins in different types with ten production lines. Therefore, a 

mixed integer linear programming (MILP) model is presented for the integrated 

production planning and scheduling problem to maximize profit. The proposed 

model is implemented in the GAMS software with the collected data from the real 

environment, and the optimal scheduling and production planning for the system is 

presented. 
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INTRODUCTION  

Production planning and scheduling (PPS) problem is a branch of decision science that is used 

to generate detailed production schedules for a production system over a relatively short 

interval of time. A production schedule indicates the production quantities of an order, as well 

as its start and completion times on the resources required for processing to satisfy 

deterministic demand during multiple periods. Moreover, a production schedule determines the 

sequence of orders on a given resource (Stadtler, 2015). PPS seeks to efficiently allocate 

resources while fulfilling customer requirements and market demand, often by trading-off 

conflicting objectives. The decisions involved are typically operational (short-term) and 

tactical (medium-term) planning problems, such as work force levels, production lot sizes and 

the sequencing of production runs (Clark et al., 2011).  

Production planning seeks to create models as a decision-making framework to meet demand 

with the attention of resources in a medium-term horizon. Although production planning 

generates overall decision making power for medium-term periods, but it is not able to take 

into account a lot of details at the operational level. In contrast, scheduling involves partial 

decision-making at the operational level.  

In other words, Scheduling occurs at the plant level and is concerned with the day-to-day 

operations of a facility, whereas operational planning involves more of the company’s 

management level and is concerned in part with production profiles for a time horizon of 

between three months and a year (Verderame and Floudas, 2008).  The treatment of operational 

planning and scheduling as independent entities can lead to an inefficient allocation of 

resources. Shah (2005) noted that, on average, <10% of the material being processed by a 

pharmaceutical firm ends up as final product. Shobrys and White (2002) reported that the 

integration of planning and scheduling can lead to increased profit levels and a reduction in 

committed capital. Therefore, the combination of the two decision-making processes has major 

implications for better management of production systems. Figure 1 shows the production 

planning and scheduling position in the time horizon. 

 

Figure 1: The Supply chain matrix represents each activity in time horizons (Maravelias and Sung, 2009) 

Generally, a production planning and a scheduling problem solve by either a single-level or 

two-level hierarchical decision making procedures. In a two-level procedure, production and 

scheduling decisions are divided into upper-level planning and lower-level planning. In the 

upper-level planning, the production quantity of different products will be determined. In the 

lower-level planning, the scheduling on individual machine based on the production quantity 

that was determined by the upper-level planning will be specified. 
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In contrast, in a single-level procedure, production quantity and scheduling decisions are 

determined simultaneously by consideration of the entire problem. Note that, the single-level 

procedure performs better than the other procedure in terms of solution quality. However, the 

computational time to solve the problem will be increased exponentially as the problem size 

increases (Cho and Jeong, 2017). In this paper, the single-level procedure is considered and a 

mathematical model is presented for PPS problem in a manufacturing plant.  

BACKGROUND  

There is a general consensus about integration of production planning and scheduling 

decisions, see  Meyr (2000), Gupta and Magnusson (2005), Jans and Degraeve (2008), Almada 

et al. ( 2008), Clark et al. (2011) and Menezes et al. ( 2011). The main modelling approaches 

and a classification framework for integrated PPS models presented by Guimarães et al. (2014). 

The PPS problem is considered in many articles using different modeling  approaches and 

solution strategies. Adl et al. (1996) presented a two-level model for a PPS problem in which 

a linear flow model is applied for decisions at higher level, while a tracking controller is for 

lower level decisions. Petkov and Maranas (1997) investigated the multiperiod planning and 

scheduling of multiproduct plants under demand uncertainty. The maximization of the 

expected profit subject to the satisfaction of single or multiple product demands with 

prespecified probability levels considered in the stochastic model. Meyr (2000) introduced a 

model for lot-sizing and scheduling problem of products on a single, capapcited production 

line with sequence-dependent setup times. By considering deterministic, dynamic demand 

without back-logging, the model was presented to minimize the sum of inventory holding and 

sequence-dependent setup costs. Gupta and Magnusson (2005) investigated the single machine 

capacited lot-sizing and scheduling problem with sequence-dependent setup costs and non-zero 

setup time. The provided a mixed integer programming formulation for the problem and 

presented a heuristic algorithm for solving large problem instances. Józefowska and Zimniak 

(2008) presented a decision support system for short-term PPS. The proposed system cosists 

of three modules: 1) an expert sytem module, 2) an optimization module and 3) a dialog 

module. The applied a multicriteria genetic algorithm implemented in the optimization module 

to search in the rules that are defined in the expert module. Verderame and Floudas (2008) 

analyzed planning and scheduling as inter-related activities that involve the allocation of plant 

resources. They proposed a planning model that is capable of providing the daily production 

profile for a multiproduct and multipurpose batch plant. They used a forward rolling horizon 

framework for interaction between the operational planning and scheduling levels. Li and 

Ierapetritou (2010) proposed a decomposition algorithm based on augmetted Lagrangian 

relaxation algorithm to address PPS problem. They also proposed a new decomposition 

strategy based on two-level optimization of the relaxation problem and compare its 

performance with traditional approximation based decomposition strategy. 

Menezes et al. ( 2011) presented a mathematical model for PPS problem which correctly 

handles non-triangular setup costs and times while enforcing the necessary feature of minimum 

lot size, and allows setup cross overs between adjacent periods. They developed a method for 

dynamically identifying and removing disconnected sub tours. They showed that the method 

performs computationally much better than other methods.  Susarla and Karimi (2011) 

simultaneously considered planning and scheduling decisions. They presented an MILP 

formulation in order to integrate resource allocation and production planning in multiproduct 

batch plants. Kis and Kovacs (2012) suggested a branch-and-cut algorithm to solve an 
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integrated PPS problem in a parallel machine environment. The planning problem consists of 

assigning each job to a week over the planning horizon, whereas in the scheduling problem 

those jobs assigned to a given week have to be scheduled in a parallel machine environment 

such that all jobs are finished within the week. They presented a mathematical model and a 

hierarchical decomposition approach to solve it. Yan et al. (2015) addressed the multi-period 

production planning and scheduling problem with setup time and mixed batches and presented 

a non-linear mixed integer programming model. They applied an alternant iterative genetic 

algorithm to solve it. Wolosewicz et al. (2015) proposed a new formulation to determine an 

optimal production plan for a fixed sequence of operations on machines by considering setup 

costs and times. They extended a Lagrangian relaxation method to solve the model. Kim and 

Lee (2016) proposed an algorithm for the integrated PPS problem where production plan is 

generated with a single objective optimization model and the schedule is produced by the 

suggested dispatching rules in a simulation model. Fumero et al. (2016) presented an approach 

that integrates design, production planning and scheduling decisions in a multi-period 

addressing a detailed description of the problem. They proposed an MILP model to design, 

production planning and scheduling problem in batch plants.G. C. Menezes et al. (2017) 

proposed a new integrated model for the PPS problem for bulk cargo port terminals, along with 

a branch-and-price exact algorithm. Cho and Jeong (2017) investigated the hierarchical 

decisions on PPS for the multi-objective reentrant hybrid flow shop problem. The 

maximization of throughput and the minimization of delayed customer demand were 

considered as objectives for production planning. Moreover, the minimization of total tardiness 

and the minimization of makespan were considered as objectives for lower-level scheduling.  

Mahdieh et al. (2017) proposed a mixed integer programming model for capacitated lot-sizing 

and scheduling with non-triangular and sequence-dependent setup times and costs 

incorporating all necessary features of set up carryover and overlapping on different machine 

configurations. The model is first developed for a single machine and then extended to other 

machine configurations, including parallel machines and flexible flow lines. Hu and Hu (2018) 

studied a stochastic lot-sizing and scheduling problem with demand uncertainty. They 

considered a manufacturing plant in a automotive industry and developed a multi-stage 

stochastic programming model to minimize overall system costs including production cost, 

setup cost, inventory cost and backlog cost. 

As seen above, mathematical models are a popular approach to deal with the PPS problem in 

different production systems. Therefore, in this paper, an MILP model is presented to a PPS 

problem in a real production system.   

 

MAIN FOCUS OF THE ARTICLE 

In this paper, production planning and scheduling problem is considered in one factory in the 

north of Iran. The factory produces cans and bins in different types. A multi-product, multi-

period MILP model is proposed to maximize profit based on the real conditions of the factory. 

The proposed model is implemented in the GAMS software environment and evaluated with 

actual collected data from the considered factory environment. By solving the model, 

production quantity of each order in one period at common and over time, inventory level of 

each order at the end-of-period, sequence of orders on each production line, the completion 

time and tardiness of each order will be determined. To the best of our knowledge, this is the 
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first attempt to combine different production planning and scheduling models in a factory that 

produces cans and bins. 

The remainder of this paper is organized as follows: in Section 2, the production planning and 

scheduling problem in the considered factory is defined. The proposed mathematical model for 

the problem is presented in Section 3. In Section 4, computational results and in Section 5, the 

conclusion and future studies are presented. 

PROBLEM DEFINITION 

In many factories, the manufacturing system operates traditionally and in line with past 

experiences. In this paper, the PPS problem in a factory in the north of Iran is considered as a 

case study. In the system, the production quantity in common and over times, the sequence of 

jobs on each production line and so on were determined traditionally and based on experiences 

of production manager. The factory produces cans and bins in different types with 10 

production lines that each line is specially to manufacture limited types of products according 

to the size and volume of cans and bins. Figure 2 indicates the layout of the factory. The 

production planning and scheduling of multi-product in multi-period on the production lines 

on basis the following characteristics of the system are considered.   

 

 

FIGURE 2: THE LAYOUT OF THE FACTORY 

1. There are several production lines with limited capacity. 

2. Each production line is able to produce some products. 

3. The factory warehouse capacity is limited. 

4. The line set up time for each product is negligible. 

5. The factory deals with human resource constraints and consequently, production 

constraints. 

6. Some months of the year like April, May and February are very busy. 
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7. Three types of sheet metal (tin, printed and oily) are used to produce the products that 

each of which has a unique processing time. Note that, in determining the sequence of 

jobs on each production line, priority is given to oily products, then to printed and, 

finally, to tin. 

8. Customers usually declare their annual demands to the factory. Then, the quantity of 

each product (monthly demands) that must be delivered to the customer in each period 

is determined by considering its due date, the capacity of the production system and the 

capacity of the customer's warehouse. 

9. The system usually receives different orders from each customer. 

10. Timely delivery of orders is one of the important objectives of the production system. 

11. The shortage is not allowed; therefore, all demands are satisfied in common and over 

time.   

 

Based on the above information, an MILP model is presented to maximize profit (the total 

revenues of sales minus the sum of holding cost, weighted tardiness penalties, production costs 

in common and over time) and to satisfy demands from customers by considering the 

production capacity of each line, human resources, etc. The model is intended to determine a) 

the production quantities of each product at each period in common and over time, b) the 

amount of inventory at the end of each period, c) the sequence of jobs for each production line 

in each period, d) the completion time and tardiness of orders. The items (a) and (b) are related 

to production planning decisions in a medium-term horizon to meet demands. Moreover, the 

items (c) and (d) are scheduling decisions in a short-term horizon to timely delivery of orders 

of each customer. 

THE PROPOSED MATHEMATICAL MODEL 

In this section, the mathematical model of the system that is described in the Section 2 is 

presented by considering the following notations:  

1. Notations 

a. Indices 

The index of  products/orders 𝑖, 𝑗 

The index of customers 𝑘, 𝑘′ 

The index of periods 𝑡 

The index of production lines 𝑙 

 

b. Parameters 

The number of orders 𝑁 

The number of customers 𝐾 

The number of periods 𝑇 

The number of production lines 𝐿 
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Time needed for producing a unit of product 𝑖 on line 𝑙 𝑝𝑖𝑙 

Production cost for a unit of product 𝑖 in common time that is 

ordered by customer 𝑘 in period 𝑡 
𝑐𝑝𝑖𝑘𝑡 

Selling price of product 𝑖 that is ordered by customer 𝑘 in 

period 𝑡 
𝑠𝑎𝑙𝑒𝑖𝑘𝑡 

Production cost for a unit of product 𝑖 in over time that is 

ordered by customer 𝑘 in period 𝑡  
𝑜𝑐𝑝𝑖𝑘𝑡 

Demand of product 𝑖  by customer 𝑘 in period 𝑡 𝑓𝑖𝑘𝑡 

Holding cost  for end-of-period inventory of product 𝑖 in 

period 𝑡 
ℎ𝑖𝑡 

Factory warehouse capacity in period 𝑡 𝑐𝑎𝑝𝑡 

Time capacity of production line 𝑙 in common time of  

period 𝑡 
𝑐𝑙𝑙𝑡 

Warehouse capacity of customer 𝑘 in period 𝑡 𝑞𝑘𝑡 

 Due date of product 𝑖 that is ordered by customer 𝑘 in 

period 𝑡 
𝑑𝑖𝑘𝑡 

The space needed to hold a unit of product 𝑖 𝑠𝑞𝑟𝑖 

1 if product 𝑖 that is ordered by customer 𝑘 is produced on 

production line 𝑙 in period 𝑡; 0  otherwise  
𝐸𝑖𝑘𝑙𝑡 

The weight of production product 𝑖 that is ordered by 

customer 𝑘 in period 𝑡. It is considered to prioritize oily 

product, then printed and finally tin products on each 

production line 

𝑤𝑖𝑘𝑡 

Tardiness penalty of product 𝑖 that is ordered by customer 𝑘 

in period 𝑡 
𝑤𝑝𝑖𝑘𝑡 

1 if order 𝑖 from customer 𝑘 is produced with at least one 

order  from other customers on the line 𝑙 in period 𝑡; 0 

otherwise  

𝑣𝑖𝑘𝑙𝑡 

A  large positive number 𝐺 

 

c. Variables 

1 if order 𝑗 from customer 𝑘′  is processed after order 𝑖 from 

customer 𝑘 on line 𝑙 in period 𝑡; 0otherwise  

𝑦𝑖𝑗𝑘𝑘′𝑙𝑡  

Tardiness of order 𝑖 from customer 𝑘 in period 𝑡 𝑇𝑎𝑖𝑘𝑡  
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2. Mathematical Model 

By considering the above mentioned notations and assumptions, as well as the orders 0 and 

N+1 as dummy orders, the proposed MILP model is as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑ ∑ ∑ 𝑠𝑎𝑙𝑒𝑖𝑘𝑡 ∗ (∑(𝑥𝑖𝑘𝑙𝑡 + 𝑜𝑥𝑖𝑘𝑙𝑡) ∗ 𝐸𝑖𝑘𝑙𝑡

𝐿

𝑙=1

)

𝑇

𝑡=1

𝐾

𝑘=1

𝑁

𝑖=1

− ∑ ∑ ∑ (ℎ𝑖𝑡𝑠𝑠𝑖𝑘𝑡 + 𝑤𝑝𝑖𝑘𝑡 𝑤𝑖𝑘𝑡 𝑇𝑎𝑖𝑘𝑡  

𝐾

𝑘=1

𝑇

𝑡=1

𝑁

𝑖=1

+ ∑(𝑐𝑝𝑖𝑘𝑡𝑥𝑖𝑘𝑙𝑡 + 𝑜𝑐𝑝𝑖𝑘𝑡𝑜𝑥𝑖𝑘𝑙𝑡)

𝐿

𝑙=1

∗ 𝐸𝑖𝑘𝑙𝑡) 

(1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑(𝑜𝑥𝑖𝑘𝑙𝑡 + 𝑥𝑖𝑘𝑙𝑡)

𝑇

𝑡=1

= ∑ 𝑓𝑖𝑘𝑡 ∗ 𝐸𝑖𝑘𝑙𝑡

𝑇

𝑡=1

                                                         ∀𝑖, 𝑘, 𝑙 (2) 

𝑠𝑠𝑖𝑘𝑡−1 + ∑(𝑜𝑥𝑖𝑘𝑙𝑡 + 𝑥𝑖𝑘𝑙𝑡)

𝐿

𝑙=1

≥ ∑ 𝑓𝑖𝑘𝑡 ∗ 𝐸𝑖𝑘𝑙𝑡

𝐿

𝑙=1

                                          ∀𝑖, 𝑘, 𝑡 (3) 

∑ ∑ 𝑥𝑖𝑘𝑙𝑡 ∗ 𝑝𝑖𝑙

𝐾

𝑘=1

𝑁

𝑖=1

≤ 𝑐𝑙𝑙𝑡                                                                                  ∀ 𝑙, 𝑡 (4) 

𝑠𝑠𝑖𝑘𝑡 =  𝑠𝑠𝑖𝑘𝑡−1 + ∑ ∑(𝑥𝑖𝑘𝑙𝑡 + 𝑜𝑥𝑖𝑘𝑙𝑡)

𝐾

𝑘=1

𝐿

𝑙=1

− 𝑓𝑖𝑘𝑡                                     ∀𝑖, 𝑘, 𝑡   (5) 

𝑠𝑠𝑖𝑇 = 0                                                                                                             ∀𝑖  (6) 

∑ 𝑠𝑞𝑟𝑖 (∑(𝑥𝑖𝑘𝑙𝑡 + 𝑜𝑥𝑖𝑘𝑙𝑡) − 𝑠𝑠𝑖𝑘𝑡

𝐿

𝑙=1

) ≤ 𝑞𝑘𝑡

𝑁

𝑖=1

                                            ∀𝑘, 𝑡 (7) 

∑ ∑ 𝑠𝑞𝑟𝑖 ∗ 𝑠𝑠𝑖𝑘𝑡

𝐾

𝑘=1

𝑁

𝑖=1

≤ 𝑐𝑎𝑝𝑡                                                                              ∀𝑡 (8) 

[𝑐𝑖𝑘𝑡 + 𝑝𝑗𝑙(𝑥𝑗𝑘′𝑙𝑡 + 𝑜𝑥𝑗𝑘′𝑙𝑡) + 𝐺(𝑦𝑖𝑗𝑘𝑘′𝑙𝑡 − 1)][𝐸𝑖𝑘𝑙𝑡𝐸𝑗𝑘′𝑙𝑡] ≤ [𝑐𝑗𝑘′𝑡𝐸𝑖𝑘𝑙𝑡𝐸𝑗𝑘′𝑙𝑡]   (9) 

Inventory level of product 𝑖  from customer 𝑘 at the end-of-period 𝑡 𝑠𝑠𝑖𝑘𝑡  

Completion time of order 𝑖 from customer 𝑘 in period 𝑡 𝑐𝑖𝑘𝑡  

Production quantity of order 𝑖 from customer 𝑘 on line 𝑙 in 

common time in period 𝑡  

𝑥𝑖𝑘𝑙𝑡  

Production quantity of order 𝑖 from customer 𝑘 on line 𝑙  in 

overtime in period 𝑡  

𝑜𝑥𝑖𝑘𝑙𝑡  
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                                ∀𝑙, 𝑘, 𝑘′, 𝑡, 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … , 𝑁 + 1 & 𝑖 ≠ 𝑗 & 𝑘 ≠ 𝑘′ 

𝑐0𝑘𝑡 = 0                                                                                                             ∀𝑙, 𝑘     (10) 

𝑐𝑛+1𝑘𝑡 = 0                                                                                                         ∀𝑙, 𝑘     (11) 

𝑇𝑎𝑖𝑘𝑡 ≥ 𝑐𝑖𝑘𝑡 − 𝑑𝑖𝑘𝑡                                                                                          ∀𝑖, 𝑘, 𝑡 (12) 

∑ ∑ 𝑦𝑗𝑖𝑘′𝑘𝑙𝑡 = 𝑣𝑖𝑘𝑙𝑡                                                ∀𝑘, 𝑙, 𝑡

𝐾

𝑘′=1

𝑁

𝑗=0,𝑖≠𝑗

, 𝑖 = 1, … , 𝑁 + 1 (13) 

∑ ∑ 𝑦𝑖𝑗𝑘𝑘′𝑙𝑡 = 𝑣𝑖𝑘𝑙𝑡                                                            ∀𝑖, 𝑘, 𝑙, 𝑡

𝐾

𝑘′=1

𝑁+1

𝑗=1,𝑖≠𝑗

, 𝑖 = 0, … , 𝑁 (14) 

𝑦𝑖𝑗𝑘𝑘′𝑙𝑡 ∈ {0,1}                                                                                             ∀𝑖, 𝑗, 𝑘, 𝑘′, 𝑙 , 𝑡   (15) 

𝑇𝑎𝑖𝑘𝑡 , 𝑐𝑖𝑘𝑡 ≥ 0                                                                                               ∀𝑖, 𝑘, 𝑙 , 𝑡       (16) 

𝑠𝑠𝑖𝑡 , 𝑥𝑖𝑘𝑙𝑡 , 𝑜𝑥𝑖𝑘𝑙𝑡 ≥ 0 , 𝐼𝑛𝑡𝑒𝑔𝑒𝑟                                                                 ∀𝑖, 𝑘, 𝑙 , 𝑡       (17) 

Expression (1) indicates the profit objective function, equal to the total revenue of sales minus 

the sum of the holding cost, weighted tardiness penalties, production cost in common and over 

time. Constraint set (2) ensures that each product is exclusively manufactured on a specialized 

production line as well as the sum of production quantities in the time horizon is equal to total 

demands of each product. Constraint set (3) represents that the sum of the production quantity 

of an item in each period and the its inventory level in the previous period must be satisfied the 

demands of the item. Constraint set (4) represents the production capacity of each line in one 

period. Constraint set (5) represents inventory-balance equations. Constraint set (6) guarantees 

that the inventory level at the end of the time horizon is zero.  Capacity constraint sets (7) and 

(8), respectively, ensure that the capacity total needed space of the customer 𝑘 and the factory 

warehouses in period 𝑡 does not exceed the available capacity. Note that, Constraint sets (2) - 

(8) are production planning constraints. 

Constraint sets (9) - (11) are used to calculate the correct completion time of the orders in 

period 𝑡 and on production line 𝑙. Note that, constraint set (9) couples the production planning 

and scheduling parts of the model. Constraint set (12) represents the tardiness of each order. 

Constraint sets (13) and (14) make it obligatory to deal with the fact that if an order is processed 

on production line 𝑙, it must precede only one job and it should be succeeded by only one job. 

Constraint sets (9) - (14) are scheduling constraints. 

As stated in Section 2, oil products are priority and then printed and tin products to produce on 

the production lines. Therefore, the coefficient 𝑤𝑖𝑘𝑡 is used for the variable 𝑇𝑎𝑖𝑘𝑡 in the 

objective function. In fact, by considering the greater weight for the tardiness of oily products 

and less weight for printed and tin products, production priority is included in the model. 

Finally, constraint sets (15) - (17) define the value ranges of variables. 

COMPUTATIONAL RESULTS 

In this section, based on the collected data from the actual plant environment, the proposed 

MILP model has been solved with a 0% optimality gap in GAMS (Brooke et al., 2012), using 
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CPLEX 12 solver, on an Intel Core i5 CPU at 2.4 GHz, and 3GB of RAM. Therefore, the 

optimal production and scheduling plan was obtained.  

By considering the different sizes of cans and bins, three types of products that have the most 

demand are considered. The data of four customers were also used. The workshop with 10 

production lines and the annual planning horizon with 12 periods are considered. The product 

information is shown in Table 1: 

TABLE 1: PRODUCST INFORMATION 

𝑝𝑖𝑙   (Min) Production Line Product 

2.4 1 21 liters 

1.2 2 3.9 liters 

0.8 5 1 liter 

The values 14, 10 and 7 are considered for the weight (𝑤𝑖𝑘𝑡) of oily, printed, tin products, 

respectively. The demand of customers for each product and the warehouse capacity of the 

customers in each period are given in Table 2. Note that, the demands and the warehouse 

capacity are fixed in each period.  

TABLE 2: THE DEMANDS AND WAREHOUSE  CAPACITY  OF CUSTOMERS IN EACH PERIOD 

 Period (Month)  

1 2 3 4 5 6 7 8 9 10 11 12 

𝑖 𝑘 𝑑𝑖𝑘𝑡 𝑞𝑘𝑡  

2
1
 l

it
er

s 

1 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 40 

2 8350 8350 8350 8350 8350 8350 8350 0 8350 8350 8350 8350 40 

3 3350 3350 3350 0 3350 3350 3350 3350 3350 3350 3350 3350 30 

4 6500 6500 6500 6500 6500 6500 0 0 0 6500 6500 6500 40 

3
.9

 l
it

er
s 

1 13000 13000 13000 13000 13000 13000 13000 13000 13000 0 0 0 40 

2 0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 0 40 

3 15000 15000 15000 15000 0 0 0 0 15000 15000 15000 15000 30 

4 16650 16650 16650 16650 16650 16650 16650 16650 16650 16650 16650 16650 40 

1
 l

it
er

 

1 10000 10000 10000 0 0 0 10000 10000 10000 10000 10000 10000 40 

2 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 40 

3 8600 8600 8600 8600 8600 0 0 8600 8600 8600 8600 8600 30 

4 12200 12200 0 0 0 0 0 0 12200 12200 12200 12200 40 
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The production cost for a unit of product in common times varies in the range [500, 1000] 

monetary unit that is depended to the type of product and the sheet metal used to it. This cost 

increases by 10% in overtime (𝑜𝑐𝑝𝑖𝑘𝑡 = 1.1 ∗ 𝑐𝑝𝑖𝑘𝑡). Moreover, the sales price (𝑠𝑎𝑙𝑒𝑖𝑘𝑡) is in 

the range [1500, 2500], and by considering the interest rate equal to 18%, the holding cost (ℎ𝑖𝑡) 

will be in the range [270, 450] monetary unit. The tardiness penalty is considered equal to 10% 

value of the total sale of order 𝑖 in period 𝑡 to customer 𝑘  (𝑤𝑝𝑖𝑘𝑡 = 0.1 ∗ 𝑠𝑎𝑙𝑒𝑖𝑘𝑡 ∗ 𝑓𝑖𝑘𝑡). The 

due dates (𝑑𝑖𝑘𝑡) is in the range [1, 30]. 

The warehouse capacity of the factory for storing cans and bins, also varies in the range [20 , 

50] m2 depending on the workload. In Table 3, the amount of space that is occupied by each 

package of products is calculated. 

Table 3: The occupied area of each package of products in the warehouse  

𝑠𝑞𝑟𝑖 (m²) 
Number per a 

package 
Height (mm) 

Diameter (mm) 
Product 

Up Down 

0.0818 34 377 286 272 21 liters 

0.0286 42 213 169 162 3.9 liters 

0.00137 52 131 117 114 1 liter 

 

The values of 𝑐𝑙𝑙𝑡 are shown in Table 4. 

TABLE 4: THE VALUES OF 𝒄𝒍𝒍𝒕(DAY) 

 Period (Month) 

Production 

lines 
1 2 3 4 5 6 7 8 9 10 11 12 

1 18 22 25 20 24 25 23 21 25 23 21 20 

2 17 23 24 20 24 25 23 21 25 22 21 20 

5 22 25 28 23 23 25 22 21 25 22 21 19 

 

The model under these assumptions comprises 6009 linear constraints, 385 continuous 

variables, and 21752 integer variables. The optimal solution has a value of 1.142853E+9 

monetary unit and was obtained in 14.357 CPU seconds. The optimal production plan for the 

12 periods are shown in Table 5,  

Table 6 and  

Table 7. 
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Table 5: The quantities of production in common and over times and inventory levels  for periods 1-4  

 Period (Month) 

𝑖 𝑘 𝑙 1 2 3 4 

𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 

2
1

 l
it

er
s 

1 1  11489 3489 10997  6486 1514    8000  

2 1 10588 1022 3260  5090  8350   8350   

3 1  3350  1944 1406  3350      

4 1  6500   13000 6500    3414 3086  

3
.9

 l
it

er
s 

1 2 20481 3488 10969  2031  13000   9096 3904  

2 2     20000 10000     10000  

3 2  15000  27710 2290 15000    15000   

4 2  16650   16650  15915 735   16650  

1
 l

it
er

 

1 5 11085 4554 5639 4361   10000      

2 5 16000  8000    16000  8000    

3 5  8600  8600   8600   8600   

4 5 12200   12200         

 

Table 6: The quantities of production in common and over times and inventory levels  for periods 5-8  

 Period (Month) 

𝑖 𝑘 𝑙 5 6 7 8 

𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 

2
1
 l

it
er

s 

1 1 4267 3733  8000   13529 2471 8000    

2 1  25050 16700   8350       

3 1 3350   3350    3350  3350   

4 1 6500   3355 3145        

3
.9

 l
it

er
s 

1 2 13000   13470  470 11060 1470   13000  

2 2  10000   30000 20000   10000    

3 2             

4 2 15915 735  16650   16650   25301 7999 16650 

1
 l

it
er

 

1 5       10000   10000   

2 5 24000  16000   8000    8000   

3 5 8600         9158  558 
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4 5       12200  12200   12200 

 

Table 7: The quantities of production in common and over times and inventory levels  for periods 9-12  

 Period (Month) 

𝑖 𝑘 𝑙 9 10 11 12 

𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 𝑥 𝑜𝑥 𝑠𝑠 

2
1

 l
it

er
s 

1 1  16000 8000    8000   8000   

2 1 8350   8350   1002 7348  414 7936  

3 1 6355 345 3350    3350   3350   

4 1    5179 14321 13000   6500    

3
.9

 l
it

er
s 

1 2 13000            

2 2 10000    10000  10000      

3 2 7120 7880   15000  15301  301 7446 7253  

4 2    26506 6794 16650    16650   

1
 l

it
er

 

1 5 20000  10000    10000   10000   

2 5 8000   8000   16000  8000    

3 5 16642  8600    8600   8600   

4 5    31285 5315        

 

As seen from Table 5, the production quantity of product 1(21 liters) for customer 1 that was 

produced on line 1 at common and over times is equal to 0 and 11489, respectively. By 

considering the demand (8000), its inventory level at the end-of-period 1is obtained equal to 

3489. This result is achieved with other products, customers and periods. In Table 5, consider 

product 2, customer 3 and line 2, the demand of period 3 is produced in the period 2 and is 

saved in the warehouse of factory for delivery to the customer in the period 3. Because, 

production costs of the product in period 3 are considered very high. Based on the above 

analysis and the results in Table 5, 6 and 7, can be claimed that the proposed mathematical 

model is correct in production planning part.  

The sequence of orders on production lines at each period is shown in Table 8. For example, 

consider the sequence on line 1 in period 1:3 → 4 → 1 → 2. It means that the order 3 will be 

processed in first, then order 4 and so on 1 and 2. As stated previously, the oily products have 

high priority.  Since the order 3 includes oily products, then it is correctly at the first location 

of the sequence. Checking other sequences show that the proposed mathematical model is 

correct in scheduling part.  

TABLE 8: THE SEQUENCE OF ORDERS ON PRODUCTION LINES AT EACH PERIOD  

 Period (Month) 

 1 2 3 4 5 6 7 8 9 10 11 12 
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Line 

1 
3 → 4
→ 1 → 2 

3 → 2
→ 1 → 4 

1 → 3
→ 2 

4 → 1
→ 2 

3 → 4
→ 1 → 2 

3 → 4
→ 1 3 3 3 → 2

→ 1 2 → 4 3 → 1
→ 2 

3 → 1
→ 2 

Line 

2 
3 → 4
→ 1 

1 → 4
→ 2 → 3 1 → 4 2 → 1

→ 3 → 4 
2 → 1
→ 4 

1 → 4
→ 2 1 → 4 1 → 4 2 → 1

→ 3 
2 → 3
→ 4 2 → 3 3 → 4 

Line 

5 
3 → 4
→ 1 → 2 

1 → 3
→ 4 

3 → 1
→ 2 3 3 → 2  1 → 4 2 → 3

→ 1 
2 → 3
→ 1 2 → 4 3 → 1

→ 2 3 → 1 

 

SENSITIVITY ANALYSIS  

Sensitivity analysis is used to clarify the problem and ensure the suitability of the proposed 

model. A sensitivity analysis is a technique used to determine how different values of an 

independent variable will affect a particular dependent variable under a given set of 

assumptions. 

The available capacity of warehouse in the factory at each period was an important factor in 

the system. Consider the above instance, with a change in the original value of warehouse 

capacity of the factory in period t (𝑐𝑎𝑝𝑡), the impact on the profit, holding cost, production cost 

and tardiness penalties are evaluated.  

The parameter 𝑐𝑎𝑝𝑡 increases and decreases by 50% of its original value and the results are 

shown in Table 9.  

TABLE 9: THE IMPACT OF CHANGE  𝒄𝒂𝒑𝒕 (%) ON THE PROFIT, HOLDING COST, 

PRODUCTION COST AND TARDINESS PENALTIES  

Change in 𝑐𝑎𝑝𝑡 

(%) 

Profit Holding cost Production cost Tardiness Penalties 

-50.00 1.083551E+9 7.262917E+7 8.497330E+8 4.385271E+8 

-37.50 1.102875E+9 7.728154E+7 8.486828E+8 4.201953E+8 

-25.00 1.121759E+9 8.179648E+7 8.488223E+8 4.018634E+8 

-12.50 1.134066E+9 8.943271E+7 8.463124E+8 3.930419E+8 

0.00 1.142853E+9 9.447749E+7 8.469851E+8 3.855761E+8 

12.50 1.151345E+9 1.005051E+8 8.468540E+8 3.781103E+8 

25.00 1.154701E+9 1.061990E+8 8.466977E+8 3.759347E+8 

37.50 1.155136E+9 1.084019E+8 8.467287E+8 3.759347E+8 

50.00 1.155270E+9 1.093349E+8 8.466741E+8 3.759347E+8 

 

As can be seen from Table 9, the profit increases by increasing the available capacity of the 

warehouse and decreases by decreasing it. Increasing the available capacity of the warehouse 

lead to increase the quantity of production and as a result, increasing production and holding 

costs and decreasing tardiness penalties. Moreover, decreasing the capacity lead to increase 

tardiness penalties.  
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CONCLUSION  

In this paper, the integration some of the short-term and medium-term decisions in 

manufacturing systems were considered. Regarding to this, an integrated mathematical model 

for production planning and scheduling problem is presented by considering the conditions of 

a production system. The MILP model is presented to maximize profit (the total revenue of 

sales minus the sum of the holding cost, weighted tardiness penalties, production cost in 

common and over times). The model is implemented in the GAMS software environment based 

on actual collected data. By solving the proposed model, the production quantity of various 

products at common and over times on each production line, the inventory levels at the end of 

each period, the jobs sequence on each production line, and the completion time and tardiness 

of orders are determined. Finally, providing multi-objective models, considering the 

uncertainty for parameters, providing exact and meta-heuristic methods for large-scale 

instances, are included in the proposed future studies of this research. 
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